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1. Introduction

The conventional Landau-Lifshitz (LL) or Landau-Lifshitz-Gilbert (LLG) equation is a grand
master equation that provides quantitative predictions on magnetic structure and magnetiza-
tion dynamics of ferromagnets at low temperatures. At high temperatures, however, the LLG
equation fails to describe the longitudinal relaxation and thus it is necessary to extend the
LL equation. In particular, it is desirable to obtain a similarly effective equation, which is
capable of quantitatively computing magnetization dynamics at high temperatures in real time.
Such extension is not only theoretically interesting but also technologically relevant. For high
temperatures the LLG equation must be replaced by a more thermodynamically consistent
approach such as the Landau-Lifshitz-Bloch (LLB) equation [3]. The LLB equation essentially
interpolates between the LLG equation at low temperatures and the Ginzburg-Landau theory of
phase transitions. It is valid not only below but also above the Curie temperature 𝑇𝑐 . An impor-
tant property of the LLB equation is that the magnetization magnitude is no longer conserved
but is a dynamical variable [4]. The spin polarization vector 𝐮(𝑥, 𝑡), where 𝐮 = 𝐦

𝑚0
𝑠
, and 𝐦 is

magnetization vector and 𝑚0
𝑠 is the saturation magnetization value at 𝑇 = 0. ForΩ ⊂ ℝ𝑑 , 𝑑 ≥ 1,

𝐮 satisfies the following LLB equation

𝜕𝐮
𝜕𝑡 = 𝛾𝐮 × 𝐻eff(𝐮) +

𝐿1

|𝐮|2 (
𝐮 ⋅ 𝐻eff(𝐮)) 𝐮 −

𝐿2

|𝐮|2
𝐮 × (𝐮 × 𝐻eff(𝐮)) , (1)

where 𝛾 > 0 is the gyromagnetic ratio, the symbol × denotes the vector cross product in ℝ3, 𝐿1
and 𝐿2 are the longitudinal and transverse damping parameters, respectively.
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Here, we consider a ferromagnetic LLB equation, in which the temperature 𝑇 is raised higher
than 𝑇𝑐 , and as a consequence the longitudinal 𝐿1 and transverse 𝐿2 damping parameters are
equal. The effective field𝐻eff(𝐮) is given by

𝐻eff(𝐮) = Δ𝐮 − 1
𝜒‖ (

1 + 3
5

𝑇
𝑇 − 𝑇𝑐

|𝐮|2)𝐮,

where 𝜒‖ is the longitudinal susceptibility.
Using the fact that 𝐿1 = 𝐿2 = 𝜅1, we can rewrite (1) in the following form

𝜕𝐮
𝜕𝑡 = 𝜅1Δ𝐮 + 𝛾𝐮 × Δ𝐮 − 𝜅2(1 + 𝜇|𝐮|2)𝐮, in Ω × (0, 𝑇) (2)

where 𝜅2 =
𝜅1
𝜒‖
, and 𝜇 = 3𝑇

5(𝑇−𝑇𝑐 )
.

As boundary and initial conditions we assume

𝜕𝜈𝐮 = 0, on 𝜕Ω × (0, 𝑇) (3)

𝐮(𝑥, 0)=𝐮0(𝑥) in Ω (4)

where 𝜕𝜈𝐮 denotes the outward normal derivative of 𝐮 on the boundary of Ω.
For the problem (2)–(4), existence of weak solutions has been proved by Kim Ngan Le (see

[7]), using Faedo-Galerkin approximations.
In this paper, we consider the following time-fractional LLB equation in one dimension of

space, which is obtained from (2) by replacing the first-order time derivative with a fractional
derivative in the Caputo sense:

𝜕𝛼𝐮(𝑥, 𝑡)
𝜕𝑡𝛼 = 𝜅1Δ𝐮 + 𝛾𝐮 × Δ𝐮 − 𝜅2(1 + 𝜇|𝐮|2)𝐮 in Ω × (0, 𝑇), (5)

where 𝜅1, 𝜅2 and 𝜇 are positive constants. Equation (5) is subject to the boundary and initial
conditions (3)–(4) and 0 < 𝛼 < 1, is the order of the time-fractional derivative, 𝜕

𝛼𝐮(𝑥,𝑡)
𝜕𝑡𝛼 denotes

the Caputo fractional derivative of order 𝛼 as defined in [5] and given by

𝜕𝛼𝐮(𝑥, 𝑡)
𝜕𝑡𝛼 = 1

Γ(1 − 𝛼) ∫
𝑡

0

𝜕𝐮(𝑥, 𝑠)
𝜕𝑠

𝑑𝑠
(𝑡 − 𝑠)𝛼 , 0 < 𝛼 < 1.

Note that for 𝛼 = 1, we obtain the classical LLB equation (2). Theorem 3 discusses the limit
𝛼 → 1. When 𝛼 = 0, we obtain the following steady state problem

𝐮 = 𝜅1Δ𝐮 + 𝛾𝐮 × Δ𝐮 − 𝜅2(1 + 𝜇|𝐮|2)𝐮

with homogeneous Neumann boundary condition. We remark that the unique solution of this
problem is 𝐮 = 0. In recent years, it has been shown that the fractional differential equations
can be used successfully to model many phenomena in various fields, such as fluid mechanics,
viscoelasticity, chemistry and engineering [1, 6, 10, 11]. Fractional derivative is an excellent
tool for describing the memory and hereditary properties of various materials and processes
while in integer-order models such effects are neglected. It also appears in the theory of control
of dynamical systems, where for the description of the controlled system and the controller
fractional differential equations are used. Several works on the literature deal with numerical
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approximation of fractional models. For example in [8], the authors studied the numerical
resolution of a time-fractional diffusion equation, which is obtained from the standard diffusion
equation by replacing the first-order time derivative with a fractional derivative. Note that the
model considered in [8] is linear. In our case the LLB equation is nonlinear and the nonlinearity
makes difficult the mathematical analysis of the model equation.

Throughout, we make use of the following notation. For Ω an open bounded domain of ℝ,
𝑘 ∈ ℕ∗ and 𝑝 ≥ 1, we denote by 𝕃𝑝(Ω) = (𝐿𝑝(Ω))3 andℍ𝑘(Ω) = (𝐻𝑘(Ω))3 the classical Hilbert
spaces equipped with the usual norm denoted by ‖ ⋅ ‖𝕃𝑝(Ω) and ‖ ⋅ ‖ℍ𝑘(Ω).

The rest of the paper is divided as follows. In the next section, a finite difference scheme
for the temporal discretization of the problem in consideration is given. We obtain existence of
weak solutions to the discretized problem. In Section 3, stability results are derived and error
estimates are provided for the semi-discrete problem, showing that the temporal accuracy is of
order 2 − 𝛼. The last section concludes the paper and provides future directions for this work.

2. A Finite Difference Scheme for Time Fractional LLB

We proceed as in [8, 12, 13]. We introduce a finite difference approximation to discretize the
time-fractional derivative. Let 𝛿 = 𝑇

𝑁 be the length of each time step, for some large𝑁 , 𝑡𝑘 = 𝑘𝛿,
𝑘 = 0, 1,… ,𝑁 . We use the following formulation: for all 0 ≤ 𝑘 ≤ 𝑁 − 1;

𝜕𝛼𝐮(𝑥, 𝑡)
𝜕𝑡𝛼 = 1

Γ(1 − 𝛼)

𝑘

∑
𝑗=0 ∫

𝑡𝑗+1

𝑡𝑗

𝜕𝐮(𝑥, 𝑡)
𝜕𝑠

𝑑𝑠
(𝑡𝑘+1 − 𝑠)𝛼

= 1
Γ(1 − 𝛼)

𝑘

∑
𝑗=0

𝐮(𝑥, 𝑡𝑗+1) − 𝐮(𝑥, 𝑡𝑗)
𝛿 ∫

𝑡𝑗+1

𝑡𝑗

𝑑𝑠
(𝑡𝑘+1 − 𝑠)𝛼 + 𝐫𝑘+1𝛿

(6)

where 𝐫𝑘+1𝛿 is the truncation error. It can be seen from [8] that the truncation error verifies

𝐫𝑘+1𝛿 ≲ 𝑐𝐮𝛿2−𝛼 (7)

where 𝑐𝐮 is a constant depending only on 𝐮. On the other hand, we have

1
Γ(1 − 𝛼)

𝑘

∑
𝑗=0

𝐮(𝑥, 𝑡𝑗+1) − 𝐮(𝑥, 𝑡𝑗)
𝛿 ∫

𝑡𝑗+1

𝑡𝑗

𝑑𝑠
(𝑡𝑘+1 − 𝑠)𝛼

= 1
Γ(1 − 𝛼)

𝑘

∑
𝑗=0

𝐮(𝑥, 𝑡𝑗+1) − 𝐮(𝑥, 𝑡𝑗)
𝛿 ∫

𝑡𝑘+1−𝑗

𝑡𝑘−𝑗

𝑑𝑡
𝑡𝛼

= 1
Γ(1 − 𝛼)

𝑘

∑
𝑗=0

𝐮(𝑥, 𝑡𝑘+1−𝑗) − 𝐮(𝑥, 𝑡𝑘−𝑗)
𝛿 ∫

𝑡𝑗+1

𝑡𝑗

𝑑𝑡
𝑡𝛼

= 1
Γ(2 − 𝛼)

𝑘

∑
𝑗=0

𝐮(𝑥, 𝑡𝑘+1−𝑗) − 𝐮(𝑥, 𝑡𝑘−𝑗)
𝛿𝛼 ((𝑗 + 1)1−𝛼 − 𝑗1−𝛼) .
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Let us denote 𝑏𝑗 = (𝑗+1)1−𝛼−𝑗1−𝛼, 𝑗 = 0, 1,… , 𝑘, and define the discrete fractional differential
operator 𝐿𝛼

𝑡 by

𝐿𝛼
𝑡 𝐮(𝑥, 𝑡𝑘+1) =

1
Γ(2 − 𝛼)

𝑘

∑
𝑗=0

𝑏𝑗
𝐮(𝑥, 𝑡𝑘+1−𝑗) − 𝐮(𝑥, 𝑡𝑘−𝑗)

𝛿𝛼 .

Then (6) becomes
𝜕𝛼𝐮(𝑥, 𝑡)
𝜕𝑡𝛼 = 𝐿𝛼

𝑡 𝐮(𝑥, 𝑡𝑘+1) + 𝐫𝑘+1𝛿 .

Using this approximation, we obtain the following finite difference scheme to (2): for 𝑘 =
1,… ,𝑁 − 1,

𝐿𝛼
𝑡 𝐮(𝑥, 𝑡𝑘+1) = 𝜅1Δ𝐮𝑘+1 + 𝛾𝐮𝑘+1 × Δ𝐮𝑘+1 − 𝜅2(1 + 𝜇|𝐮𝑘+1|2)𝐮𝑘+1 in Ω (8)

where 𝐮𝑘+1 is an approximation to 𝐮(𝑥, 𝑡𝑘+1). The scheme (8) can be reformulated into the form

𝑏0𝐮𝑘+1 − 𝜅1Γ(2 − 𝛼)𝛿𝛼Δ𝐮𝑘+1 = 𝑏0𝐮𝑘 −
𝑘

∑
𝑗=1

𝑏𝑗(𝐮𝑘+1−𝑗 − 𝐮𝑘−𝑗)

+𝛾Γ(2 − 𝛼)𝛿𝛼𝐮𝑘+1 × Δ𝐮𝑘+1 − 𝜅2Γ(2 − 𝛼)𝛿𝛼(1 + 𝜇|𝐮𝑘+1|2)𝐮𝑘+1

= 𝑏0𝐮𝑘 +
𝑘−1

∑
𝑗=0

(𝑏𝑗 − 𝑏𝑗+1)𝐮𝑘−𝑗 + 𝛾Γ(2 − 𝛼)𝛿𝛼𝐮𝑘+1 × Δ𝐮𝑘+1

−𝜅2Γ(2 − 𝛼)𝛿𝛼(1 + 𝜇|𝐮𝑘+1|2)𝐮𝑘+1.

(9)

To complete the semi-discrete problem, we consider the boundary and initial conditions

𝜕𝜈𝐮𝑘+1 = 0 on 𝜕Ω,

𝐮0 = 𝐮0 in Ω.

Noting that

𝑏𝑗 > 0, 𝑗 = 0, 1,… , 𝑘,

1 = 𝑏0 > 𝑏1 > … > 𝑏𝑘, 𝑏𝑘 → 0 as 𝑘 → ∞,

𝑘

∑
𝑗=0

(𝑏𝑗 − 𝑏𝑗+1) + 𝑏𝑘+1 = (1 − 𝑏1) +
𝑘−1

∑
𝑗=1

(𝑏𝑗 − 𝑏𝑗+1) + 𝑏𝑘 = 1.

Letting

𝛽 = Γ(2 − 𝛼)𝛿𝛼

then (9) can be rewritten in the form

𝐮𝑘+1 − 𝛽𝜅1Δ𝐮𝑘+1

= (1 − 𝑏1)𝐮𝑘 +
𝑘−1

∑
𝑗=1

(𝑏𝑗 − 𝑏𝑗+1)𝐮𝑘−𝑗 + 𝑏𝑘𝐮0 + 𝛽𝛾𝐮𝑘+1 × Δ𝐮𝑘+1 − 𝛽𝜅2(1 + 𝜇|𝐮𝑘+1|2)𝐮𝑘+1

(10)
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for all 𝑘 ≥ 1. When 𝑘 = 0, we obtain

𝐮1 − 𝛽𝜅1Δ𝐮1 = 𝐮0 + 𝛽𝛾𝐮1 × Δ𝐮1 − 𝛽𝜅2(1 + 𝜇|𝐮1|2)𝐮1.

When 𝑘 = 1, we have

𝐮2 − 𝛽𝜅1Δ𝐮2 = (1 − 𝑏1)𝐮1 + 𝑏1𝐮0 + 𝛽𝛾𝐮2 × Δ𝐮2 − 𝛽𝜅2(1 + 𝜇|𝐮2|2)𝐮2.

We define the error term 𝐫𝑘+1 by

𝐫𝑘+1 = 𝛽(
𝜕𝛼𝐮(𝑥, 𝑡𝑘+1)

𝜕𝑡𝛼 − 𝐿𝛼
𝑡 𝐮(𝑥, 𝑡𝑘+1)).

From (7), it follows that

|𝐫𝑘+1| = Γ(2 − 𝛼)𝛿𝛼|𝐫𝑘+1𝛿 | ≤ 𝑐𝐮𝛿2. (11)

2.1. Existence for the Semi-discrete Scheme

What is interesting in this problem is the nonlinear term 𝐮 × Δ𝐮, this term creates a difficulty
concerning the existence of solutions for the discretized problem, that is why we are reduced
to study the problem in one dimension to use the Sobolev embedding ℍ1(Ω) ↪ 𝕃∞(Ω) which
implies that 𝐮 × ∇𝐮 ∈ 𝕃2(Ω) for 𝐮 ∈ ℍ1(Ω).

Before starting, we give the following definition of weak solution of (10).

Definition 1. We say that 𝐮𝑘+1 is a weak solution of (10) if

∫Ω
𝐮𝑘+1 ⋅ 𝐯 𝑑𝑥 + 𝛽𝜅1∫Ω

∇𝐮𝑘+1 ⋅ ∇𝐯 𝑑𝑥

= ∫Ω
𝐟𝑘 ⋅ 𝐯 𝑑𝑥 − 𝛽𝛾∫Ω

𝐮𝑘+1 × ∇𝐮𝑘+1 ⋅ ∇𝐯 𝑑𝑥 − 𝛽𝜅2∫Ω
(1 + 𝜇|𝐮𝑘+1|2)𝐮𝑘+1 ⋅ 𝐯 𝑑𝑥

(12)

for all 𝐯 ∈ ℍ1(Ω), where 𝐟𝑘 = (1 − 𝑏1)𝐮𝑘 +∑𝑘−1
𝑗=1 (𝑏𝑗 − 𝑏𝑗+1)𝐮𝑘−𝑗 + 𝑏𝑘𝐮0.

At each time step we have to solve a discretized fractional LLB equation.

Theorem 1. There exists at least a weak solution 𝐮𝑘+1 of (9) such that 𝐮𝑘+1 ∈ ℍ1(Ω).

We proceed with the derivation of a priori estimates. From now on we denote by 𝐶 a generic
constant, which may not be the same at different occurrences.

Lemma 1. For all 𝑘, one has

‖𝐮𝑘+1‖ℍ1(Ω) ≤ 𝐶,

where 𝐶 is a positive constant independent of 𝑘.

Proof. We prove this result by recurrence. When 𝑘 = 0, we have

∫Ω
𝐮1 ⋅ 𝐯 𝑑𝑥 + 𝛽𝜅1∫Ω

∇𝐮1 ⋅ ∇𝐯 𝑑𝑥

= ∫Ω
𝐮0 ⋅ 𝐯 𝑑𝑥 − 𝛽𝛾∫Ω

𝐮1 × ∇𝐮1 ⋅ ∇𝐯 𝑑𝑥 − 𝛽𝜅2∫Ω
(1 + 𝜇|𝐮1|2)𝐮1 ⋅ 𝐯 𝑑𝑥
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for all 𝐯 ∈ ℍ1(Ω). Taking 𝐯 = 𝐮1 in the previous equation, we obtain

∫Ω
|𝐮1|2 𝑑𝑥 + 𝛽𝜅1∫Ω

|∇𝐮1|2 𝑑𝑥 + 𝛽𝜅2∫Ω
(1 + 𝜇|𝐮1|2)|𝐮1|2 𝑑𝑥

= ∫Ω
𝐮0 ⋅ 𝐮1 𝑑𝑥 ≤ 1

2 ∫Ω
|𝐮1|2 𝑑𝑥 + 1

2 ∫Ω
|𝐮0|2 𝑑𝑥.

Then

1
2 ∫Ω

|𝐮1|2 𝑑𝑥 + 𝛽𝜅1∫Ω
|∇𝐮1|2 𝑑𝑥 + 𝛽𝜅2∫Ω

(1 + 𝜇|𝐮1|2)|𝐮1|2 𝑑𝑥 ≤ 𝐶.

Hence

‖𝐮1‖ℍ1(Ω) ≤ 𝐶.

Suppose now that we have

‖𝐮𝑗‖ℍ1(Ω) ≤ 𝐶; 𝑗 = 1, 2,… , 𝑘,

and prove that

‖𝐮𝑘+1‖ℍ1(Ω) ≤ 𝐶.

Multiplying equation (10) by 𝐮𝑘+1 and integrating over Ω, we get

∫Ω
|𝐮𝑘+1|2 𝑑𝑥 + 𝛽𝜅1∫Ω

|∇𝐮𝑘+1|2 𝑑𝑥 + 𝛽𝜅2∫Ω
(1 + 𝜇|𝐮𝑘+1|2)|𝐮𝑘+1|2 𝑑𝑥

= ∫Ω
𝐟𝑘 ⋅ 𝐮𝑘+1 𝑑𝑥 ≤ 1

2 ∫Ω
|𝐮𝑘+1|2 𝑑𝑥 + 1

2 ∫Ω
|𝐟𝑘|2 𝑑𝑥.

Using the recurrence hypothesis, we have

‖𝐟𝑘‖ℍ1(Ω) ≤ 𝐶.

Then

1
2 ∫Ω

|𝐮𝑘+1|2 𝑑𝑥 + 𝛽𝜅1∫Ω
|∇𝐮𝑘+1|2 𝑑𝑥 + 𝛽𝜅2∫Ω

(1 + 𝜇|𝐮𝑘+1|2)|𝐮𝑘+1|2 𝑑𝑥 ≤ 𝐶.

Therefore

‖𝐮𝑘+1‖ℍ1(Ω) ≤ 𝐶.

This concludes the proof of Lemma 1.

2.2. Proof of Theorem 1

The proof uses Schaefer’s fixed point theorem. We construct an appropriate mapping whose
fixed points will be solutions to (12). Let 𝐳 ∈ ℍ1(Ω), and define the functional 𝐅𝑘𝐳 ∈ ℍ−1(Ω) by

∫Ω
𝐅𝑘𝐳 ⋅ 𝐯 𝑑𝑥 = ∫Ω

𝐟𝑘 ⋅ 𝐯 𝑑𝑥 − 𝛽𝛾∫Ω
𝐳 × ∇𝐳 ⋅ ∇𝐯 𝑑𝑥 − 𝛽𝜅2∫Ω

(1 + 𝜇|𝐳|2)𝐳 ⋅ 𝐯 𝑑𝑥
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for all 𝐯 ∈ ℍ1(Ω).
Using Lemma 1, and the fact that ℍ1(Ω) ↪ 𝕃∞(Ω) in one dimension, we can show that there

exists a constant 𝐶 > 0, independent of 𝑘, such that

‖𝐅𝑘𝐳‖ℍ−1(Ω) ≤ 𝐶.

Indeed, we have respectively

|∫Ω
𝐟𝑘 ⋅ 𝐯 𝑑𝑥| ≤ ‖𝐟𝑘‖𝕃2(Ω)‖𝐯‖𝕃2(Ω) ≤ 𝐶‖𝐯‖𝕃2(Ω) ≤ 𝐶‖𝐯‖ℍ1(Ω),

|∫Ω
𝐳 × ∇𝐳 ⋅ ∇𝐯 𝑑𝑥| ≤ ‖𝐳‖∞‖∇𝐳‖𝕃2(Ω)‖∇𝐯‖𝕃2(Ω) ≤ 𝐶‖𝐯‖ℍ1(Ω),

and

|∫Ω
(1 + 𝜇|𝐳|2)𝐳 ⋅ 𝐯 𝑑𝑥| ≤ (‖𝐳‖∞ + 𝜇‖𝐳‖3∞)∫Ω

|𝐯| 𝑑𝑥 ≤ 𝐶‖𝐯‖𝕃2(Ω) ≤ 𝐶‖𝐯‖ℍ1(Ω).

Hence, we define the operator Ψ ∶ ℍ1(Ω) ⟼ ℍ1(Ω) as follows: Ψ𝐳 = 𝝎𝐳 where 𝝎𝐳 is the
unique solution in ℍ1(Ω) of

∫Ω
𝝎𝐳 ⋅ 𝐯 𝑑𝑥 + 𝛽𝜅1∫Ω

∇𝝎𝐳 ⋅ ∇𝐯 𝑑𝑥 = ∫Ω
𝐅𝑘𝐳 ⋅ 𝐯 𝑑𝑥 (13)

for all 𝐯 ∈ ℍ1(Ω).
We now assert that Ψ is weakly sequentially continuous and weakly compact. Indeed, let

(𝐳𝑛)𝑛 ⊂ ℍ1(Ω), such that 𝐳𝑛 ⇀ 𝐳 in ℍ1(Ω). Put 𝐲𝑛 = Ψ𝐳𝑛, for a subsequence, we have

𝐳𝑛 → 𝐳 strongly in 𝕃2(Ω) and a.e,

and there exists 𝐲 ∈ ℍ1(Ω) such that

𝐲𝑛 ⇀ 𝐲 weakly in ℍ1(Ω).

We will show that 𝐲 is a solution of (13). Indeed, for 𝐯 ∈ ℍ1(Ω), we have

∫Ω
𝐲𝑛 ⋅ 𝐯 𝑑𝑥 + 𝛽𝜅1∫Ω

∇𝐲𝑛 ⋅ ∇𝐯 𝑑𝑥 = ∫Ω
𝐅𝑘𝐳𝑛 ⋅ 𝐯 𝑑𝑥. (14)

On the other hand, we have

∫Ω
𝐅𝑘𝐳𝑛 ⋅ 𝐯 𝑑𝑥 = ∫Ω

𝐟𝑘 ⋅ 𝐯 𝑑𝑥 − 𝛽𝛾∫Ω
𝐳𝑛 × ∇𝐳𝑛 ⋅ ∇𝐯 𝑑𝑥 − 𝛽𝜅2∫Ω

(1 + 𝜇|𝐳𝑛|2)𝐳𝑛 ⋅ 𝐯 𝑑𝑥.

By the previous convergences and continuous embedding ℍ1(Ω) ↪ 𝕃4(Ω), we obtain

∫Ω
𝐅𝑘𝐳𝑛 ⋅ 𝐯 𝑑𝑥 → ∫Ω

𝐅𝑘𝐳 ⋅ 𝐯 𝑑𝑥 (15)

for all 𝐯 ∈ 𝐶∞(Ω), and by density argument (15) holds for all 𝐯 ∈ ℍ1(Ω). In fact, the strong
convergence of 𝐳𝑛 to 𝐳 in 𝕃2(Ω) and the weak convergence of∇𝐳𝑛 to∇𝐳 in 𝕃2(Ω) allow to deduce
that

∫Ω
𝐳𝑛 × ∇𝐳𝑛 ⋅ 𝐯 𝑑𝑥 → ∫Ω

𝐳 × ∇𝐳 ⋅ 𝐯 𝑑𝑥,

for all 𝐯 ∈ 𝐶∞(Ω). On the other hand, by the continuous embedding ℍ1(Ω) ↪ 𝕃4(Ω) we obtain
that the sequence (1 + 𝜇|𝐳𝑛|2)𝑛 is bounded in 𝐿2(Ω). Hence 1 + 𝜇|𝐳𝑛|2 ⇀ 𝜂 in 𝐿2(Ω). We use
the following lemma to show that 𝜂 = 1 + 𝜇|𝐳|2.
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Lemma 2 (see [9]). Let Θ be a bounded open subset of ℝ𝑑
𝑥 × ℝ𝑡, ℎ𝑛 and ℎ are functions of

𝐿𝑞(Θ) with 1 < 𝑞 < ∞ such as ‖ℎ𝑛‖𝐿𝑞(Θ) ≤ 𝐶 , ℎ𝑛 → ℎ a.e in Θ then ℎ𝑛 ⇀ ℎ weakly in 𝐿𝑞(Θ).

Lemma 2 and the strong convergence of 𝐳𝑛 in 𝕃2(Ω) allow to deduce that 𝜂 = 1 + 𝜇|𝐳|2.
Hence

(1 + 𝜇|𝑧𝑛|2)𝐳𝑛 ⇀ (1 + 𝜇|𝐳|2)𝐳 weakly in 𝕃1(Ω),

and then

∫Ω
(1 + 𝜇|𝐳𝑛|2)𝐳𝑛 ⋅ 𝐯 𝑑𝑥 → ∫Ω

(1 + 𝜇|𝐳|2)𝐳 ⋅ 𝐯 𝑑𝑥

for all 𝐯 ∈ 𝐶∞(Ω).
Now, we can pass to the limit 𝑛 → ∞ in (14), we get

∫Ω
𝐲 ⋅ 𝐯 𝑑𝑥 + 𝛽𝜅1∫Ω

∇𝐲 ⋅ ∇𝐯 𝑑𝑥 = ∫Ω
𝐅𝑘𝐳 ⋅ 𝐯 𝑑𝑥.

Then

Ψ𝐳 = 𝐲.

Hence Ψ is weakly continuous. A similar argument shows that Ψ is weakly compact, since if
(𝐳𝑛)𝑛 is bounded in ℍ1(Ω), then (Ψ𝐳𝑛)𝑛 = (𝐲𝑛)𝑛 is also bounded in ℍ1(Ω), then converge weakly
in ℍ1(Ω).

Finally, we must show that the set

{𝐳 ∈ ℍ1(Ω)/𝐳 = 𝜆Ψ𝐳 for some 0 < 𝜆 ≤ 1}

is bounded in ℍ1(Ω). So assume 𝐳 ∈ ℍ1(Ω),

𝐳 = 𝜆Ψ𝐳 for some 0 < 𝜆 ≤ 1.

i.e,

𝐳
𝜆 = Ψ𝐳.

Then

∫Ω
𝐳 ⋅ 𝐯 𝑑𝑥 + 𝛽𝜅1∫Ω

∇𝐳 ⋅ ∇𝐯 𝑑𝑥 = 𝜆∫Ω
𝐅𝑘𝐳 ⋅ 𝐯 𝑑𝑥, (16)

for all 𝐯 ∈ ℍ1(Ω).
For 𝐯 = 𝐳, (16) implies that

∫Ω
|𝐳|2 𝑑𝑥 + 𝛽𝜅1∫Ω

|∇𝐳|2 𝑑𝑥 + 𝜆𝛽𝜅2∫Ω
(1 + 𝜇|𝐳|2)|𝐳|2 𝑑𝑥

= 𝜆∫Ω
𝐟𝑘 ⋅ 𝐳 𝑑𝑥 ≤ 1

2 ∫Ω
|𝐳|2 𝑑𝑥 + 1

2 ∫Ω
|𝐟𝑘|2 𝑑𝑥.

Since, by Lemma 1, (𝐟𝑘)𝑘 is bounded in ℍ1(Ω) and in particular in 𝕃2(Ω), then ‖𝐳‖ℍ1(Ω) ≤ 𝐶 ,
where 𝐶 is a constant independent of 𝑘 and 𝜆. Then the proof of Theorem 1 is complete.
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Remark 1. We point out that uniqueness can be shown by assuming that

‖∇𝐮𝑘+1‖∞ < (
2𝜅1(𝛽𝜅2 + 1)

𝛽𝛾2 )

1
2
.

In fact, we can show easily that if 𝐮𝑘+1 is a weak solution of the discretized problem then 𝐮𝑘+1 ∈
ℍ2(Ω) which implies that ∇𝐮𝑘+1 ∈ ℍ∞(Ω) in one dimension.

3. Stability and Error Analysis

We have the following unconditionally stability result.

Theorem 2. The semi-discretized problem (12) is stable, in the sense that for all 𝛿 > 0 the
following inequality holds

‖𝐮𝑘+1‖ℍ1(Ω) ≤ 𝐶‖𝐮0‖𝕃2(Ω).

where 𝐶 is a positive constant independent of 𝑘.

Proof. We prove the result by recurrence. When 𝑘 = 0, we have for 𝐯 ∈ ℍ1(Ω) that

∫Ω
𝐮1 ⋅ 𝐯 𝑑𝑥 + 𝛽𝜅1∫Ω

∇𝐮1 ⋅ ∇𝐯 𝑑𝑥

= ∫Ω
𝐮0 ⋅ 𝐯 𝑑𝑥 − 𝛽𝛾∫Ω

𝐮1 × ∇𝐮1 ⋅ ∇𝐯 𝑑𝑥 − 𝛽𝜅2∫Ω
(1 + 𝜇|𝐮1|2)𝐮1 ⋅ 𝐯 𝑑𝑥.

Taking 𝐯 = 𝐮1, we obtain

∫Ω
|𝐮1|2 𝑑𝑥 + 𝛽𝜅1∫Ω

|∇𝐮1|2 𝑑𝑥 + 𝛽𝜅2∫Ω
(1 + 𝜇|𝐮1|2)|𝐮1|2 𝑑𝑥

= ∫Ω
𝐮0 ⋅ 𝐮1 𝑑𝑥 ≤ ‖𝐮0‖𝕃2(Ω)‖𝐮1‖𝕃2(Ω) ≤ ‖𝐮0‖𝕃2(Ω)‖𝐮1‖ℍ1(Ω)

Then

‖𝐮1‖ℍ1(Ω) ≤ 𝐶‖𝐮0‖𝕃2(Ω).

Suppose now that we have

‖𝐮𝑗‖ℍ1(Ω) ≤ 𝐶‖𝐮0‖𝕃2(Ω), 𝑗 = 1, 2,… , 𝑘,
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and prove that ‖𝐮𝑘+1‖ℍ1(Ω) ≤ 𝐶‖𝐮0‖𝕃2(Ω). Multiplying equation (10) by 𝐮𝑘+1 and integrating
over Ω, and using the recurrence hypothesis, we get

∫Ω
|𝐮𝑘+1|2 𝑑𝑥 + 𝛽𝜅1∫Ω

|∇𝐮𝑘+1|2 𝑑𝑥 + 𝛽𝜅2∫Ω
(1 + 𝜇|𝐮𝑘+1|2)|𝐮𝑘+1|2 𝑑𝑥

= ∫Ω
𝐟𝑘 ⋅ 𝐮𝑘+1 𝑑𝑥

≤ (1 − 𝑏1)‖𝐮𝑘‖𝕃2(Ω)‖𝐮𝑘+1‖𝕃2(Ω) +
𝑘−1

∑
𝑗=1

(𝑏𝑗 − 𝑏𝑗+1)‖𝐮𝑘−𝑗‖𝕃2(Ω)‖𝐮𝑘+1‖𝕃2(Ω)

+𝑏𝑘‖𝐮0‖𝕃2(Ω)‖𝐮𝑘+1‖𝕃2(Ω)

≤ ((1 − 𝑏1) +
𝑘−1

∑
𝑗=1

(𝑏𝑗 − 𝑏𝑗+1) + 𝑏𝑘)‖𝐮
0‖𝕃2(Ω)‖𝐮𝑘+1‖𝕃2(Ω)

≤ ‖𝐮0‖𝕃2(Ω)‖𝐮𝑘+1‖ℍ1(Ω)

since (1 − 𝑏1) + ∑𝑘−1
𝑗=1 (𝑏𝑗 − 𝑏𝑗+1) + 𝑏𝑘 = 1. Then

‖𝐮𝑘+1‖ℍ1(Ω) ≤ 𝐶‖𝐮0‖𝕃2(Ω).

This complete the proof.

We have the following error analysis for the solution of the semi-discretized problem (12).

Theorem 3. Let 𝐮 be the exact solution of (6), (𝐮𝑗)𝑗 be the time-discrete solution of problem
(12) with the initial condition 𝐮0(𝑥) = 𝐮(𝑥, 0). Assume further that 𝐮 ∈ ℍ2(Ω) such that

‖∇𝐮‖∞ < (
2𝜅1(𝛽𝜅2+1)

𝛽𝛾2 )
1
2 . Then we have the following error estimates

(i) ‖𝐮(., 𝑡𝑗) − 𝐮𝑗‖ℍ1(Ω) ≤
𝐶

1 − 𝛼𝑇
𝛼𝛿2−𝛼, 𝑗 = 1,… ,𝑁 where 0 < 𝛼 < 1.

(ii)When 𝛼 → 1,

‖𝐮(., 𝑡𝑗) − 𝐮𝑗‖ℍ1(Ω) ≤ 𝐶𝑇𝛿, 𝑗 = 1,… ,𝑁.

Proof. Let 𝐞𝑘 = 𝐮(𝑥, 𝑡𝑘) − 𝐮𝑘(𝑥) be the difference between the exact solution of (6) and 𝐮𝑘, the
time-discrete solution of (12). We will prove the result by induction. We begin with 0 < 𝛼 < 1.
For 𝑗 = 1, by gathering (6) and (12), the error equation reads

∫Ω
𝐞1 ⋅ 𝐯 𝑑𝑥 + 𝛽𝜅1∫Ω

∇𝐞1 ⋅ ∇𝐯 𝑑𝑥

= ∫Ω
𝐞0 ⋅ 𝐯 𝑑𝑥 −∫Ω

𝐫1 ⋅ 𝐯 𝑑𝑥 + 𝛽𝛾∫Ω
(𝐮1 × ∇𝐮1 − 𝐮(𝑥, 𝑡1) × ∇𝐮(𝑥, 𝑡1)) ⋅ ∇𝐯 𝑑𝑥

+𝛽𝜅2∫Ω [
(1 + 𝜇|𝐮1|2)𝐮1 − (1 + 𝜇|𝐮(𝑥, 𝑡1)|2)𝐮(𝑥, 𝑡1)] ⋅ 𝐯 𝑑𝑥.
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Choosing 𝐯 = 𝐞1 in the above equation, it follows that

∫Ω
|𝐞1|2 𝑑𝑥 + 𝛽𝜅1∫Ω

|∇𝐞1|2 𝑑𝑥

≤ ‖𝐫1‖𝕃2(Ω)‖𝐞1‖𝕃2(Ω) + 𝛽𝛾∫Ω
(𝐮1 × ∇𝐮1 − 𝐮(𝑥, 𝑡1) × ∇𝐮(𝑥, 𝑡1)) ⋅ ∇𝐞1 𝑑𝑥

+𝛽𝜅2∫Ω [
(1 + 𝜇|𝐮1|2)𝐮1 − (1 + 𝜇|𝐮(𝑥, 𝑡1)|2)𝐮(𝑥, 𝑡1)] ⋅ 𝐞1 𝑑𝑥.

We have

∫Ω (
𝐮1 × ∇𝐮1 − 𝐮(𝑥, 𝑡1) × ∇𝐮(𝑥, 𝑡1)) ⋅ ∇𝐞1 𝑑𝑥

= ∫Ω (
𝐮1 × ∇𝐮1 − 𝐮1 × ∇𝐮(𝑥, 𝑡1) + 𝐮1 × ∇𝐮(𝑥, 𝑡1) − 𝐮(𝑥, 𝑡1) × ∇𝐮(𝑥, 𝑡1)) ⋅ ∇𝐞1 𝑑𝑥

= ∫Ω (
𝐮1 × (∇𝐮1 − ∇𝐮(𝑥, 𝑡1)) + (𝐮1 − 𝐮(𝑥, 𝑡1)) × ∇𝐮(𝑥, 𝑡1)) ⋅ ∇𝐞1 𝑑𝑥

= −∫Ω (
𝐮1 × ∇𝐞1 + 𝐞1 × ∇𝐮(𝑥, 𝑡1)) ⋅ ∇𝐞1 𝑑𝑥

= −∫Ω
𝐞1 × ∇𝐮(𝑥, 𝑡1) ⋅ ∇𝐞1 𝑑𝑥.

In the same way, we have

∫Ω [
(1 + 𝜇|𝐮1|2)𝐮1 − (1 + 𝜇|𝐮(𝑥, 𝑡1)|2)𝐮(𝑥, 𝑡1)] ⋅ 𝐞

1 𝑑𝑥

= ∫Ω[
(1 + 𝜇|𝐮1|2)𝐮1−(1+𝜇|𝐮1|2)𝐮(𝑥, 𝑡1)+(1+𝜇|𝐮1|2)𝐮(𝑥, 𝑡1)−(1 + 𝜇|𝐮(𝑥, 𝑡1)|2)𝐮(𝑥, 𝑡1)]

⋅𝐞1 𝑑𝑥

= ∫Ω
(1 + 𝜇|𝐮1|2)(𝐮1 − 𝐮(𝑥, 𝑡1)) ⋅ 𝐞1 𝑑𝑥 +∫Ω

𝜇(|𝐮1|2 − |𝐮(𝑥, 𝑡1)|2)𝐮(𝑥, 𝑡1) ⋅ 𝐞1 𝑑𝑥

= −∫Ω
(1 + 𝜇|𝐮1|2)|𝐞1|2 𝑑𝑥 + 𝜇∫Ω

(𝐮1 − 𝐮(𝑥, 𝑡1))(𝐮1 + 𝐮(𝑥, 𝑡1))(𝐮(𝑥, 𝑡1) ⋅ 𝐞1) 𝑑𝑥

= −∫Ω
(1 + 𝜇|𝐮1|2)|𝐞1|2𝑑𝑥 − 𝜇∫Ω

((𝐮1 + 𝐮(𝑥, 𝑡1)) ⋅ 𝐞1)(𝐮(𝑥, 𝑡1) ⋅ 𝐞1) 𝑑𝑥

= −∫Ω
(1 + 𝜇|𝐮1|2)|𝐞1|2 𝑑𝑥 − 𝜇∫Ω

(𝐮(𝑥, 𝑡1) ⋅ 𝐞1)2 𝑑𝑥 − 𝜇∫Ω
(𝐮1 ⋅ 𝐞1) ⋅ (𝐮(𝑥, 𝑡1) ⋅ 𝐞1) 𝑑𝑥.

The above calculations and Young’s inequality allow to get

(1 + 𝛽𝜅2)∫Ω
|𝐞1|2 𝑑𝑥 + 𝛽𝜅1∫Ω

|∇𝐞1|2 𝑑𝑥 + 𝛽𝜅2𝜇∫Ω
(𝐮(𝑥, 𝑡1) ⋅ 𝐞1)2 𝑑𝑥

+𝛽𝜅2𝜇∫Ω
|𝐮1|2|𝐞1|2 𝑑𝑥 ≤ ‖𝐫1‖𝕃2(Ω)‖𝐞1‖𝕃2(Ω) + 𝛽𝛾∫Ω

|𝐞1||∇𝐞1||∇𝐮(., 𝑡1)| 𝑑𝑥

+𝛽𝜅2𝜇∫Ω
|𝐮1|2|𝐞1|2 𝑑𝑥 + 𝛽𝜅2𝜇∫Ω

(𝐮(𝑥, 𝑡1) ⋅ 𝐞1)2 𝑑𝑥.

(17)
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That is

(1 + 𝛽𝜅2)∫Ω
|𝐞1|2 𝑑𝑥 + 𝛽𝜅1∫Ω

|∇𝐞1|2 𝑑𝑥

≤ ‖𝐫1‖𝕃2(Ω)‖𝐞1‖𝕃2(Ω) + 𝛽𝛾‖∇𝐮(., 𝑡1)‖∞(
𝜀
2 ∫Ω

|𝐞1|2 𝑑𝑥 + 1
2𝜀 ∫Ω

|∇𝐞1|2 𝑑𝑥)

for 𝜀 > 0. Hence

(1 + 𝛽𝜅2 − 𝛽𝛾‖∇𝐮(., 𝑡1)‖∞
𝜀
2)∫Ω

|𝐞1|2 𝑑𝑥 + 𝛽(𝜅1 − 𝛾 ‖∇𝐮(., 𝑡1)‖∞2𝜀 )∫Ω
|∇𝐞1|2 𝑑𝑥

≤ ‖𝐫1‖𝕃2(Ω)‖𝐞1‖ℍ1(Ω)

(18)

We choose 𝜀 such that

1 + 𝛽𝜅2 > 𝛽𝛾‖∇𝐮(., 𝑡1)‖∞
𝜀
2 and 𝛽𝜅1 > 𝛽𝛾 ‖∇𝐮(., 𝑡1)‖∞2𝜀 .

This choice is possible since ‖∇𝐮‖∞ < (
2𝜅1(𝛽𝜅2+1)

𝛽𝛾2 )
1
2 .

Dividing both sides by ‖𝐞1‖ℍ1(Ω), and using (11) we obtain

‖𝐮(., 𝑡1) − 𝐮1‖ℍ1(Ω) ≤ 𝐶𝛿2.

for 𝜀 > 0. Since 1 ≤ 1
1−𝛼 , 𝑏0 = 1 and 𝛿 ≤ 𝑇 , we get

‖𝐮(., 𝑡1) − 𝐮1‖ℍ1(Ω) ≤
𝐶

1 − 𝛼𝑇
𝛼𝛿2−𝛼.

Then point (i) is verified for 𝑗 = 1. Suppose now we have proved (i) for all 𝑗 = 1,… , 𝑘, and
prove it also for 𝑗 = 𝑘 + 1. Combining (5) and (12), we obtain

∫Ω
𝐞𝑘+1 ⋅ 𝐯 𝑑𝑥 + 𝛽𝜅1∫Ω

∇𝐞𝑘+1 ⋅ ∇𝐯 𝑑𝑥

= (1 − 𝑏1)∫Ω
𝐞𝑘 ⋅ 𝐯 𝑑𝑥 +

𝑘−1

∑
𝑗=1

(𝑏𝑗 − 𝑏𝑗+1)∫Ω
𝐞𝑘−𝑗 ⋅ 𝐯 𝑑𝑥 + 𝑏𝑘∫Ω

𝐞0 ⋅ 𝐯 𝑑𝑥 −∫Ω
𝐫𝑘+1 ⋅ 𝐯 𝑑𝑥

+𝛽𝛾∫Ω
(𝐮𝑘+1 × ∇𝐮𝑘+1 − 𝐮(𝑥, 𝑡𝑘+1) × ∇𝐮(𝑥, 𝑡𝑘+1)) ⋅ ∇𝐯 𝑑𝑥

+𝛽𝜅2∫Ω [
(1 + 𝜇|𝐮𝑘+1|2)𝐮𝑘+1 − (1 + 𝜇|𝐮(𝑥, 𝑡𝑘+1)|2)𝐮(𝑥, 𝑡𝑘+1)] ⋅ 𝐯 𝑑𝑥.

(19)

doi:10.11131/2017/101264 Page 12



Research in Applied Mathematics

Taking 𝐯 = 𝐞𝑘+1 in (19) and by similar calculations used to obtain (17), we get

(1 + 𝛽𝜅2)∫Ω
|𝐞𝑘+1|2 𝑑𝑥 + 𝛽𝜅1∫Ω

|∇𝐞𝑘+1|2 𝑑𝑥 + 𝛽𝜅2𝜇∫Ω
|𝐮𝑘+1|2|𝐞𝑘+1|2 𝑑𝑥

+𝛽𝜅2𝜇∫Ω
(𝐮(𝑥, 𝑡𝑘+1) ⋅ 𝐞𝑘+1)2 𝑑𝑥

≤ (1 − 𝑏1)‖𝐞𝑘‖𝕃2(Ω)‖𝐞𝑘+1‖𝕃2(Ω)

+
𝑘−1

∑
𝑗=1

(𝑏𝑗 − 𝑏𝑗+1)‖𝐞𝑘−𝑗‖𝕃2(Ω)‖𝐞𝑘+1‖𝕃2(Ω) + ‖𝐫𝑘+1‖𝕃2(Ω)‖𝐞𝑘+1‖𝕃2(Ω)

+𝛽𝛾∫Ω
|𝐞𝑘+1||∇𝐞𝑘+1||∇𝐮(., 𝑡𝑘+1)| 𝑑𝑥 + 𝛽𝜅2𝜇∫Ω

|𝐮𝑘+1|2|𝐞𝑘+1|2 𝑑𝑥

+𝛽𝜅2𝜇∫Ω
(𝐮(𝑥, 𝑡𝑘+1) ⋅ 𝐞𝑘+1)2 𝑑𝑥.

(20)

That is

(1 + 𝛽𝜅2)∫Ω
|𝐞𝑘+1|2 𝑑𝑥 + 𝛽𝜅1∫Ω

|∇𝐞𝑘+1|2 𝑑𝑥

≤ (1 − 𝑏1)‖𝐞𝑘‖𝕃2(Ω)‖𝐞𝑘+1‖𝕃2(Ω) +
𝑘−1

∑
𝑗=1

(𝑏𝑗 − 𝑏𝑗+1)‖𝐞𝑘−𝑗‖𝕃2(Ω)‖𝐞𝑘+1‖𝕃2(Ω)

+‖𝐫𝑘+1‖𝕃2(Ω)‖𝐞𝑘+1‖𝕃2(Ω) + 𝛽𝛾‖∇𝐮(., 𝑡𝑘+1)‖∞(
𝜀
2 ∫Ω

|𝐞𝑘+1|2 𝑑𝑥 + 1
2𝜀 ∫Ω

|∇𝐞𝑘+1|2 𝑑𝑥)

for 𝜀 > 0. By the same reasoning used for the case 𝑗 = 1 and the induction assumption and the
fact that 𝑏−1𝑘

𝑏−1𝑘+1
< 1, we get

(1 + 𝛽𝜅2 − 𝛽𝛾‖∇𝐮(., 𝑡𝑘+1)‖∞
𝜀
2)∫Ω

|𝐞𝑘+1|2 𝑑𝑥 + 𝛽(𝜅1 − 𝛾
‖∇𝐮(., 𝑡𝑘+1)‖∞

2𝜀 )∫Ω
|∇𝐞𝑘+1|2 𝑑𝑥

≤ ((1 − 𝑏1)𝑏−1𝑘−1 +
𝑘−1

∑
𝑗=1

(𝑏𝑗 − 𝑏𝑗+1)𝑏−1𝑘−𝑗−1)𝐶𝛿
2‖𝐞𝑘+1‖𝕃2(Ω) + ‖𝐫𝑘+1‖𝕃2(Ω)‖𝐞𝑘+1‖𝕃2(Ω)

≤ ((1 − 𝑏1) +
𝑘−1

∑
𝑗=1

(𝑏𝑗 − 𝑏𝑗+1) + 𝑏𝑘)𝐶𝑏
−1
𝑘−1𝛿2‖𝐞𝑘+1‖ℍ1(Ω).

(21)
Recall that

(1 − 𝑏1) +
𝑘−1

∑
𝑗=1

(𝑏𝑗 − 𝑏𝑗+1) + 𝑏𝑘 = 1.

For a suitable choice of 𝜀 and dividing both sides by ‖𝐞𝑘+1‖ℍ1(Ω), we obtain

‖𝐞𝑘+1‖ℍ1(Ω) ≤ 𝐶𝑏−1𝑘−1𝛿2.

Noting that

𝑘−𝛼𝑏−1𝑘−1 ≤
1

1 − 𝛼 , 𝑘 = 1,… ,𝑁.
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Then, we have for all 𝑘 such that 𝑘𝛿 ≤ 𝑇

‖𝐮(., 𝑡𝑘+1) − 𝐮𝑘+1‖ℍ1(Ω) = ‖𝐞𝑘+1‖ℍ1(Ω)

≤ 𝐶𝑘−𝛼𝑏−1𝑘−1𝑘𝛼𝛿2

≤ 𝐶
1−𝛼 (𝑘𝛿)

𝛼𝛿2−𝛼

≤ 𝐶
1−𝛼𝑇

𝛼𝛿2−𝛼.

Then (i) is proved.
Now, to prove (ii), we will derive again the following estimation by induction:

‖𝐮(., 𝑡𝑗) − 𝐮𝑗‖ℍ1(Ω) ≤ 𝐶𝑗𝛿2, 𝑗 = 1,… , 𝑘. (22)

The above inequality is obvious for 𝑗 = 1. Suppose now that (22) holds for all 𝑗 = 1,… , 𝑘 and
prove that it holds also for 𝑗 = 𝑘 + 1. Similarly to the previous case, by combining (5) and (12)
and taking 𝐯 = 𝐞𝑘+1 as a test function and using the induction assumption, we obtain

(1 + 𝛽𝜅2)‖𝐞𝑘+1‖2𝕃2(Ω) + 𝛽𝜅1‖∇𝐞𝑘+1‖2𝕃2(Ω) ≤ (1 − 𝑏1)‖𝐞𝑘‖𝕃2(Ω)‖𝐞𝑘+1‖𝕃2(Ω)

+
𝑘−1

∑
𝑗=1

(𝑏𝑗 − 𝑏𝑗+1)‖𝐞𝑘−𝑗‖𝕃2(Ω)‖𝐞𝑘+1‖𝕃2(Ω) + ‖𝐫𝑘+1‖𝕃2(Ω)‖𝐞𝑘+1‖𝕃2(Ω)

+𝛽𝛾‖∇𝐮(., 𝑡𝑘+1)‖∞(
𝜀
2 ∫Ω

|𝐞𝑘+1|2 𝑑𝑥 + 1
2𝜀 ∫Ω

|∇𝐞𝑘+1|2 𝑑𝑥)

≤ ((1 − 𝑏1)𝐶𝑘𝛿2 +
𝑘−1

∑
𝑗=1

(𝑏𝑗 − 𝑏𝑗+1)𝐶(𝑘 − 𝑗)𝛿2 + 𝐶𝛿2)‖𝐞
𝑘+1‖𝕃2(Ω)

+𝛽𝛾‖∇𝐮(., 𝑡𝑘+1)‖∞(
𝜀
2 ∫Ω

|𝐞𝑘+1|2 𝑑𝑥 + 1
2𝜀 ∫Ω

|∇𝐞𝑘+1|2 𝑑𝑥)

≤ ((1 − 𝑏1)
𝑘

𝑘 + 1 +
𝑘−1

∑
𝑗=1

(𝑏𝑗 − 𝑏𝑗+1)
𝑘 − 𝑗
𝑘 + 1 +

1
𝑘 + 1)𝐶(𝑘 + 1)𝛿2‖𝐞𝑘+1‖𝕃2(Ω)

+𝛽𝛾‖∇𝐮(., 𝑡𝑘+1)‖∞(
𝜀
2 ∫Ω

|𝐞𝑘+1|2 𝑑𝑥 + 1
2𝜀 ∫Ω

|∇𝐞𝑘+1|2 𝑑𝑥)

≤ ((1 − 𝑏1) +
𝑘−1

∑
𝑗=1

(𝑏𝑗 − 𝑏𝑗+1) − (1 − 𝑏1)
1

𝑘 + 1

−
𝑘−1

∑
𝑗=1

(𝑏𝑗 − 𝑏𝑗+1)
𝑗 + 1
𝑘 + 1 +

1
𝑘 + 1)𝐶(𝑘 + 1)𝛿2‖𝐞𝑘+1‖𝕃2(Ω)

+𝛽𝛾‖∇𝐮(., 𝑡𝑘+1)‖∞(
𝜀
2 ∫Ω

|𝐞𝑘+1|2 𝑑𝑥 + 1
2𝜀 ∫Ω

|∇𝐞𝑘+1|2 𝑑𝑥).

Since

1 − 𝑏1
𝑘 + 1 +

𝑘−1

∑
𝑗=1

(𝑏𝑗 − 𝑏𝑗+1)
𝑗 + 1
𝑘 + 1 + 𝑏𝑘 ≥

1
𝑘 + 1((1 − 𝑏1) +

𝑘−1

∑
𝑗=1

(𝑏𝑗 − 𝑏𝑗+1) + 𝑏𝑘) = 1
𝑘 + 1,
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Then

(1 + 𝛽𝜅2 − 𝛽𝛾‖∇𝐮(., 𝑡𝑘+1)‖∞
𝜀
2)‖𝐞

𝑘+1‖2𝕃2(Ω) + 𝛽(𝜅1 − 𝛾
‖∇𝐮(., 𝑡𝑘+1)‖∞

2𝜀 )‖∇𝐞
𝑘+1‖2𝕃2(Ω)

≤ ((1 − 𝑏1) +
𝑘−1

∑
𝑗=1

(𝑏𝑗 − 𝑏𝑗+1) + 𝑏𝑘)𝐶(𝑘 + 1)𝛿2‖𝐞𝑘+1‖ℍ1(Ω)

= 𝐶(𝑘 + 1)𝛿2‖𝐞𝑘+1‖ℍ1(Ω),

and it follows, for an 𝜀 well chosen and after dividing both sides by ‖𝐞𝑘+1‖ℍ1(Ω) that

‖𝐮(., 𝑡𝑘+1) − 𝐮𝑘+1‖ℍ1(Ω) = ‖𝐞𝑘+1‖ℍ1(Ω) ≤ 𝐶(𝑘 + 1)𝛿2,

for 𝑘 satisfying (𝑘 + 1)𝛿 ≤ 𝑇.We conclude that

‖𝐮(., 𝑡𝑘+1) − 𝐮𝑘+1‖ℍ1(Ω) ≤ 𝐶𝑇𝛿.

Then (ii) is proved, and the proof of Theorem 3 is complete.

4. Concluding Remarks

In this paper, we proposed a finite difference scheme for the time fractional Landau-Lifshitz-
Bloch equation such as the fractional time derivative of order 0 < 𝛼 < 1 is taken in the sense
of Caputo. The main challenge here is due to the nonlinearity on the right-hand side of the
partial differential equation. A fixed point procedure is used to show the existence of solution
for the discretized model. The stability analysis is provided showing that the temporal accuracy
is of order 2 − 𝛼. We intend to complete the results obtained in this paper by performing a
full discretization and conducting numerical experiments for the considered model. These two
issues represent an interesting direction of future research.
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