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Abstract. Personalized therapy is “the right drug for the right patient at the right time”. Here we reported a case of personalized
therapy using gene expression signature (GES) related drug discovery to treat a patient with drug-resistant metastases from breast-
tumor. Methods: After mRNA obtained from metastatic liver tissue was performed by microarray, GES of genomic profiles were
uncovered by bioinformatics tool and targeting drugs related with GESwere mined by drug-bank. Several targeting-drugs approved
by FDA were selected to treat the patient. Results: 1198 genes were uncovered for the higher expression by two-fold to compare
normal liver specimens in which 10 of mined genes were identified as set-1 GES for metastasis and 16 of genes were uncovered
as set-2 directly for primary breast tumor. Drug-bank platform were used to discover drugs for target set-1/2 genes. Eventually,
medropxyoprogesterone (MPA) targeting set-I gene and doxorubicin targeting set-2 gene were selected for the patient because
the two drugs have already been approved by FDA. After doxorubicin and MPA were administered, patient’s metastatic-tumor
showed complete response. Conclusions:We not only analyze genomic expression profiles but also discover sensitive compounds
for drug-resistant tumor. We successfully select drugs approved by FDA to treat the patient.

Keywords: Genomic expression profile; GEO profile; gene expression signature (GES); quantitative pathway; drug discovery;
Doxorubicin; Medroxyprogesterone; DDX21 (Nucleolar RNA helicase 21); Calcyclin (S100 calcium binding protein A6)

1. Introduction

Clinical genome analysis has the ability to provide some
information required for identification of genotype signature
(GWAS), gene expression signature (GES) and drug dis-
covery [1–4]. Enormous amounts of genomic analysis have

been used for personalized therapy (the right drug for the
right patient at the right time) of different tumor diseases,
genetic diseases and unknown rare diseases. These kinds of
genomic analysis and diagnosis always use DNA, RNA and
proteins from a pair of tissues or cells including a pair of
surgical specimens such as tumor tissue vs normal tissue by
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in vivo sampling [5], a pair of pathological specimens such
as a pair of tumor cells vs normal cells in situ sampling
obtained from laser capture microscopy (LCM) [6, 7] or fresh
cells from clinical specimens by ex vivo culture [8]. Such
clinical genomics database, when combinedwith quantitative
genomic analysis, allow physicians and scientists to identify
genotype signature, gene expression signature and discover
drugs for patients with drug resistance in tumor disease or
unknown treatment in genetic, neurological and rare diseases
[9, 10]. One of the major challenges we often face is
how to obtain a pair of specimens. Here we introduce a
mining process from microarray data obtained from lonely
liver metastatic tissue with downstream quantitative genomic
analysis for identifying GES and discovering drugs related to
GES. Following a three-step process, that is, mining genomic
expression profile, identifying gene expression signature
and discovering specific drugs, a set of drugs specifically
targeting metastasis liver (set-1) and specifically targeting
primary tumor (set-2) are used for the patient.

2. Methods

2.1. Patient and specimen. The patient was given diagnoses
according to clinical criteria. Informed consent was obtained
by the patient for the genomic analysis and drug targeting.
Tumor tissue (snap-frozen in liquid N2) were obtained at the
time of surgery and were stored at 80∘C. Metastasis into
liver from breast ductal tumor was diagnosed and classified
according to cell type by conventional pathology.

2.2. Microarray experiment. Microarray was performed on
RNA derived from the patient liver metastasis specimen.
RNA extract and microarray process were prepared accord-
ing to the manufacturer instructions (Affymetrix Expression
Analysis Technical Manual; Affymetrix, Santa Clara, CA)
[11, 12]. Briefly, RNA specimens triple from liver metastasis
were extracted by Trizol reagent (Invitrogen, Carlsbad,
CA) and cleaned by RNaeasy column (Qiagen, Valencia,
CA). After sequential washing, total RNA was eluted in
RNase-free water. Isolated total RNA was quantified and
its integrity was confirmed on a 2100-Bioanalyzer. Each
1ug of triple RNAs was used to prepare biotinylated anti-
sense RNA (cRNA) using Ambion’s MessengeAmpII-Biotin
Enhanced kit (Ambion, Austin, TX) and 15ug of fragmented
biotinylated cRNA was hybridized to each Genechip Human
Genome U133-2A for the triple experiment.

2.3. Genomic data mining. According to current clinical
genomic methods, at least three ways can be used as min-
ing for heterogeneous cells, which are hierarchical cluster,
principle component analysis (PCA) and self-organizingmap
(SOM) [13, 14]. In these analyses, after normalization of
microarray expression data by Model-based Background
Correction (MBCB) combined by MAS5 (which have been
established by our colleagues) [15], hierarchical clustering

and significance of microarray (SAM) would be used to
uncover genomic profiles. All of hierarchical clustering and
SAM are performed by BRB platform and NIA platform
from NIH as our previous reports [16, 17]. Briefly, in order
to mine specific gene profile only from metastasis, we first
compare triple normalized profiles of the patient specimens
to normalized profiles of three normal liver tissues (from
GEO) by SAM and Hierarchical clustering performance
with cut off two-fold increase. After genomic profiles were
uncovered, the profiles of patient specimens should still have
mixed genes from vessel cell or lymphocytes or macrophages
because of the raw microarray data from tissue level. In
order to exclude these kinds of genes, we also conduct
merging analysis in database of T-cells and macrophage
which have been stored in our database as our previous report
[18]. Following excluding the mixtures, eventually, a set-1
profile were classified as liver-metastasis profile by merging
the profile to triple GEO data which is as similar as liver
metastasis spreading from breast ductal tumor and a set-2
profile was defined as profile of primary ductal breast cancer
by comparing genomic profile of patient to genomic data
from primary ductal breast cancer in GEO.

2.4. Identification of gene expression signature: After we
harvest genomic profile as set-1 and set-2, in which some
or most of them cannot be directly used as drug targeting.
We continue identifying GES in which some genes have
higher linking with most or all of tumor cell function. Our
quantitative analysis of gene network topology was focused
on “betweenness” and “connectivity” which was identified
by Python scripts developed by ourselves based on the two
indices, that is, higher betweenness and low connectivity
[19, 20].

2.5. Drug discovery. Following the quantitative analysis of
pathways, GES of set-1 genes for specific hepatic metastasis
and GES of set-2 for specific primary breast tumor are input
into GeneGo software and drug-bank [21, 22] to discover
drugs. Finally, set-1 drugs were discovered for hepatic
metastasis and set-2 drugs used for targeting primary breast
tumor.

2.6. Software availability. Genomic data mining from liver
tissues were conducted by BRB platform as our previous
report [15]. GES determination is processed by our own
Python scripts for therapeutic identification. GeneGo soft-
ware and drug-bank were used for drug discovery. Some
public data such as GEO are also used in the project.

3. Results

3.1. Patient. The patient is 55 years old female, 65 kg.
In 2007, right breast ductal tumor (with immunochemical
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staining diagnosed as triple-negative breast tumors, or neg-
ative for estrogen receptor, ER, progesterone receptor, PR,
and HER2) was removed with six courses of chemother-
apy (cisplatin and docetaxel) and one course of radiation.
Six courses chemotherapy and one course radiation were
performed against spinal metastasis in 2009. One course of
interventional therapy was processed against liver metastasis
in 2011. In 2012, new metastasis in right liver and multiple
lymph nodes have recurrence so that the patient was selected
as candidate for personalized therapy.

3.2. Microarray results. In order to decrease bias from chip
types, we selected Affymetrix human genome U133-2A
as chip assay because several normal liver database per-
formed byU133-2Amicroarray (GSM362951, GSM362953,
GSM362955) have been stored in GEO database. After
microarray performance and triple repeat data come out,
MBCB combined MAS5 was used for normalization by both
patient’s database from metastatic tissue and GEO database
from normal liver. These performances using similar array
chip can greatly decrease bias those from different chips.
Significant analysis of microarray (SAM) was used for
mining genes as a whole mining plan (Figure 1A). As
supplemental Table 1, total 1198 genes are two-fold higher
in the patient than those from normal liver gene expression
in GEO database. Hierarchical clustering analysis confirmed
gene expression pattern (Figure 2).

3.3. The results of genomic mining. After 1198 genes
were uncovered for higher expression in patient metastatic
tumor, the raw genes may still have chances for mixed
some genes with higher expression levels from lymphocytes
(TIL) and macrophage in the tumor tissue. In order to
study these genes, we employed specific database of T-
cells and macrophage which all have been saved in our
database as our previous report [18]. Fortunately, no genes
regarding special-killing tumor cell such as TNF-alpha
or FAS-L from T-cell or macrophage are mixed in the
genomic expression profiles. In order to further classify
the genome, we compared the 1198 gene profiles to GEO
database with liver metastatic tumor spread from similar
type of primary breast tumor (GSM352136, GSM3521139,
and GSM352146). 253 candidate genes (set-1) were defined
as set-1 genes shown in supplemental Table 2. Because of
the metastatic mass from breast ductal tumor, in order to
uncover specific genes from primary ductal breast cancer,
we also compared the patient’s genomic profile to database
of both normal ductal tissues and breast ductal cancer
from GEO (three normal ductal tissues for GSM134584,
GSM134588, GSM134687, and three primary ductal cancer
tissues for GSM134698, GSM134701 and GSM134704). 16
genes (set-2) as Table 1 have been uncovered as higher
expression in breast ductal tumor to compare normal ductal
tissues.

3.4. The results of identification of genomic signature. After
harvesting genomic profiles, most of them cannot be directly
used as drug targeting because we need identify effective
therapeutic targets. Such analysis requires exploring network
properties, in particular the importance of individual network
nodes. There are many measures that use the importance
of nodes in a network such as betweeness centrality (BC)
and degree centrality (DC, connectivity). Although both
high values may serve as effective drug targets, DC is also
likely to be toxic due to their system-wide influence, thus
we search therapeutic targeting with higher betweenness
(>1.0%) for effective drugs and lower connectivity (<30)
for lower toxicity due to lower system-wide influence. As in
Table 2, 10 of 253 proteins from set-1 profile was identified as
“gene expression signature” by computational analysis with
our Python script based on the quantitative pathway topology
for targeting patient metastatic tumor.

3.5. Drug discovery. After identifying set-1 gene expres-
sion signature for specific hepatic metastasis and set-2 for
specific primary breast tumor, all targeted genes are input
into Gene-bank database, several drugs were discovered
to specifically target hepatic metastasis and primary breast
tumor as Table 3. As shown in Table 3, doxorubicin is
specific to targeting DDX21 and GSK923295 is to repress
CENP-E of set-1 genes. Medroprogesterone is to inhibit
calcyclin and pentamidine is to specifically attack matriptase
of set-2 genes, respectively. Interestingly, secobarbital and
pentobarbital which are not used for tumor diseases are also
discovered to inhibit RacGAP from set-2 proteins. In order to
visualize the targeting identification of GES related with drug
discovery, a mapping identification of expression signature
from primary breast tumor is illuminated as in Figure 3A and
Supplemental-Figure 3A and 3B. A mapping identification
of expression signature from metastatic liver is displayed as
shown in Figure 3B and Supplemental-Figure 3C and Figure
3D.

3.6. Clinical application and results. According to mining
GES and uncovering drugs, finally selected drugs to treat
the patient tumor disease are relied on drugs approved by
FDA and clinical comprehensive consideration. Because
doxorubicin has been approved by FDA to treat advanced
breast tumor and MPA have also been approved by FDA
to treat some woman diseases as in Supplemental Table
3. Some clinical data show large dosage administration
of MPA is much better than small dosage administration
of MPA [23]. Furthermore, combination of doxorubicin
with docetaxel and cyclophosphamide shows better response
than doxorubicin treatment alone [24–27]. Five courses of
doxorubicin with docetaxel and cyclophosphamide and daily
MPA management are performed for the patient (see Table
4). After sequencing and combination treatment, as Figure
4A and 4B, metastasis in right liver and multiple lymph
nodes have partial or complete responses after the 5 months’
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Figure 1: Strategies of therapeutic targeting identification and drug discovery for personalized therapy. Shown is a schematic diagram
outlining our genomic bioinformatics approach for the data generated from microarray analysis as Figure1A and drug discovery and
application as Figure 1B.
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Figure 2: Strategies of gene profile mining. Expression values were normalized to the zero values at normal control cluster group to compare
tumor cluster group with 1198 genes. The resultant log2 ratios were averaged and displayed in the heatmap. The deep color bar indicates
log2 ratio of change higher than 2-fold increase. Light color is indicating the zero values as normal control in gene expression.

AgiAl
Publishing House | http://www.agialpress.com/



The Open Access Journal of Science and Technology 5

Table 1: Gene expression level from set-2 profile between breast tumor and normal breast duct.

Gene
Symbol

Gene Expression
fold-change
(metastatic
liver/normal liver)

Gene expression (log) fromGEO of breast
tumor

Gene expression (log) from GEO of normal
breast duct

GSM134698 GSM134701 GSM134704 GSM134584 GSM134588 GSM134687
AGTPBP1 3.43 7.57 7.57 7.62 5.81 5.59 5.99
cct6a 2.89 9.09 8.91 8.95 6.98 7.4 7.95
CENPF 12.48 8.1 8 8.17 3.89 3.72 5.8
copb2 2.36 9.35 9.33 9.35 8.3 7.98 8.02
CUX1 3.31 7.59 7.42 7.71 5.7 5.44 6.29
DDX21 3.45 8.84 8.94 8.77 7.12 7.52 6.56
fam60a 10.1 9.15 9.08 9.06 5.32 6.01 5.91
ISG15 12.25 10.7 10.85 10.74 7.29 7.38 6.79
MXRA5 6.41 9.21 9.28 8.96 6.16 7.21 5.99
NCBP1 4.28 6.96 6.78 6.53 5.52 5.07 5.23
OSBPL10 3.38 6.2 6.4 6.41 3.8 5.01 4.94
PLP2 6.39 8.41 8.42 8.45 5.93 5.49 5.87
RBMS1 3.59 9.49 9.65 9.64 7.35 8.35 7.53
Sulf1 47.15 9.37 9.39 9.36 3.32 3.82 4.28
SYNCRIP 6.25 8.79 8.73 8.86 5.99 5.74 6.71
TAF1D 6.73 8.33 8.59 8.12 5.49 6.93 6.47

Table 2: Results of genomic expression signature from set-1 profile.

Gene Symbol Patients Gene Expression Fold-change (metastatic
liver/normal liver)

Connectivity Betweenness

HSPA1A 3.41 6 0.015
HIST1H2BG 7.45 3 0.050
EIF3H 3.86 6 0.012
SET 3.50 21 0.042
ST14 4.72 5 0.158
S100A6 (Calcyclin) 16.41 6 0.021
RACGAP1 5.95 17 0.052
ORC3L 4.08 12 0.095
AGTPBP1 3.46 6 0.015
CBX5 3.64 28 0.126

personalized therapy with observation in the following 3
months. The patient also can be tolerant for side-effects
(supplemental Table 4).

4. Discussion

Traditional clinical diagnosis and management focuses on
the individual patient’s symptoms, medical history, and data
from laboratory and imaging evaluation to diagnose and
treat illnesses. Recent new developments in human disease
have provided us with a more detailed understanding of
the disease in individual subject, such as, single nucleotide
polymorphisms (SNP) and genome-wide association studies
(GWAS) [28, 29]. Based on the new extension, targeting

identification and drug discovery is an emerging clini-
cal application area for drug-resistance tumor disease and
unknown-treatment genetic disease and some rare disease,
which is called as personalized therapy [30]. However,
proteomics and transcriptome from genotype change (such
as SNPs) may eventually have a great impact on the
new medicine [31, 32]. Because the DNA genome is the
information archive, their proteins and RNA do the work
of the cell so that the functional aspects of the cell are
controlled by and through proteins and RNAs, not gene’s
DNA level [33–35]. Moreover, most of the FDA approved
targeted therapeutics are directed at proteins or RNAs, not
DNA archives so that pharmaceutical interventions aim to
modulate the aberrant protein activity, not genetic defect.
In addition, because analyses of proteins have largely found
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A B

Figure 3: Analysis of pathway and network related with genomic expression signature and drug targeting. Figure 3A indicate S100A6
network from primary breast ductal tumor related with MPA and Figure3B show metastases pathway from DDX21 related Doxorubicin
targeting.

Table 3: Result of drug discovery by GeneGo and Genebank platform.

Drug targeting Drug names Drug targeting proteins Drug targeting function
Primary breast ductal tumor GSK923295 CENP-E Inhibition
Primary breast ductal tumor Doxorubicin DDX21 Inhibition
Liver metastasis Medroxyprogesterone (MPA) Calcyclin (S100A6) Inhibition
Liver metastasis Secobarbital RacGAP1 Inhibition
Liver metastasis Pentobarbital RacGAP1 Inhibition
Liver metastasis Pentamidine ST14 (Matriptase) Inhibition

little concordance between the SNPs archives and proteomics
expression, clinical scientists now make an indirect analysis
of the transcriptome to search a concordance between gene
expression and DNA archives due to stable and feasible data
and profiles from transcriptome levels such as RNA-seq and
mRNA microarray [36, 37].

Triple-negative breast tumors (negative in estrogen recep-
tor, progesterone receptor, and HER2) which do not respond
to endocrine agents or some molecular therapy can only
be treated with very few of drugs [38–40]. Fortunately,
some of the newest treatment with triple-negative breast
cancers has incorporated genomics analysis. Some scientists
have presented an evaluation of triple-negative breast cancer
according to genomic data [41]. It is hoped that advances in
targeted treatment and optimization of chemotherapy based
on genomic analysis will provide more effective treatment
and improved outcomes for this aggressive subclass of breast
cancer. The patient performed by traditional chemotherapy,
radiation and interventional therapy is often recurrence,
thus it is good candidate for us to perform personalized

therapy relying on identifying gene expression signature and
uncovering sensitive drug discovery.

For this case, tumor specimens obtained from surgery
do not have enough condition to harvest normal control
as negative control, which needs normal tissue 2 cm away
from tumor mass so that we cannot use the tissue as both
tumor specimens and normal control. The only way is to
select GEO data from human normal liver as negative
control (GSM362951, GSM362953, and GSM362955). Due
to the three negative controls performed by Affymetrix
human genome U133-2A, we also select U133-2A as chip
performance for the patient specimens to decrease variability
between different chips.

After microarray data was normalized, significant analysis
of microarray (SAM) and Hierarchical cluster were used
for mining gene expression profile. 1198 genes were higher
expression by two-fold increase as current clinical genomic
protocol to compare to normal liver specimens (although
we have two-fold decrease profile, it is not important to
relate GES so that they were omitted here). In order to
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Figure 4: Results of positron emission tomography-computed tomography (PET/CT). Figure4A shows multiple metastases before
personalized therapy. 4A1 indicating multiple metastasis in livers, multiple lymph nodes in subclavian and retroperitoneal position; 4AII
show hypermetabolic areas by red masses with metastases in liver; 4AIII indicates hypermetabolic areas by red masses in retroperitoneal
position. Figure 4B indicates good response after 5 months’ personalized therapy.
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Table 4: Drug treatment plan and application.

Drugs FDA approval Dosage Application methods
MPA FDA approved 4 x 250mg/daily/ 6 month Oral
Doxorubicin FDA approved 60 mg/m2/21day/5 cycle intravenous
Docetaxel FDA approved 75 mg/m2/21day/5 cycle intravenous
Cyclophosphamide FDA approved 500 mg/m2/21 day/2 cycle Intravenous

confirm the profiles, 1198 genes were compared to GEO gene
profiles (triple database similar to liver metastasis of breast
ductal tumor), finally 253 genes were mined for metastatic
profile in the patient, called as set-1 genes. In order to search
targeting profiles for breast ductal tumor, the 1198 genes
were secondarily compared to GEO database of breast ductal
tumor, a set with 16 genes was uncovered, called as set-2
genes.

After we defined genomic profile into set-1 and set-2,
most genes cannot be directly used as drug targeting. The
reason is that, although a gene is highly expressed in tumor
cells, it might not be the key genes linking all functions in
the tumor cell. That is, even if the genes are knockout in
animal or knockdown in the cells, the cell maybe still survive
because the cell function in the cell is not fully destroyed.
On the other hand, if a genes linking all cell functions is
discovered, the knockout of the protein in animal model or
knockdown of it in cell model, will kill the cell. Based on
the basic mechanism, we need work on identifying genomic
expression signature by quantitative network analysis or
topology. Now there are several quantitative network can
be used for topology. Here “betweenness centrality” and
“degree centrality”, a routine topology to mine GES, are
used for the analysis [42]. “betweenness centrality (BC)”
is shortest pathway passing the gene and “connectivity
or degree centrality (DC)” is how many genes linking
the gene [43–45]. According to topology analysis, both
all have effective influence cell function. Because DC is
also likely to be toxic due to their system-wide influence,
thus we define GES using higher BC and low DC [46].
Eventually, 10 genes of 253 genes selected from set-1 (with
higher betweenness and lower connectivity from metastatic
tissues) were identified for targeting metastasis tumor. 16
genes specifically targeting primary breast ductal tumor were
selected for set-2.

Accordingly, two set of drugs were discovered to treat
hepatic metastasis and breast ductal tumor from GeneGo
software and GeneBank. Medropxyoprogesterone (MPA),
pentamidine, pentobarbital and secobarbital are mined for
targeting set-I genes and doxorubicin and GSK923295
are uncovered for targeting set-2 genes. Because MPA
and doxorubicin have been approved by FDA for clinical
application for different tumors (as Supplemental 3), MPA
and doxorubicin are selected to treat the patient. Moreover,
according to clinical comprehensive consideration, combina-
tion of doxorubicin is much better than lonely doxorubicin
treatment so that doxorubicin is combined with docetaxel and

cyclophosphamide to treat the patient. After five courses per-
sonalized therapy by combination of doxorubicin (5 courses),
docetaxel (5 courses) and cyclophosphamide (2 courses) and
MPA daily management, we successfully achieve a good
response for the recurrence of metastatic liver and multiple
metastatic lymph nodes for the patient.

5. Conclusion

After mRNA obtained from metastatic liver tissue was
performed by microarray and GES were uncovered by
quantitative network and targeting drugs related with GES
was mined by drug-bank, several mined drugs which have
been approved by FDA were selected to administer the
patient. Finally, we discover selected drugs sensitive for the
recurrence of metastatic liver and multiple metastatic lymph
nodes.
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