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Abstract. The aim of the research is to analyze and model the progress of product accumulation in relation with the kinetic
properties of the enzyme and substrate concentration. Conventional methods of analysis are used. The results are as follows:
‘linear’ decline of high substrate concentration (or rise of the product) is determined by the kinetic properties of the enzyme
taking into account initial substrate concentration (Model 1); the exponential decline corresponds to Model 2; the deviations from
linearity occurring either because of product inhibition of the reaction, the backward reaction or substrate exhaustion are modelled
by algebraic sum of linear and exponential functions. Modification of the conventional scheme of the enzyme-catalyzed reaction,
therefore, facilitates deriving the equations highlighting the role of the reaction product and initial substrate concentration in the
progress of the reaction. The equations enable estimation of the kinetic parameters of the enzyme from the data of conventional
experiments and an additional experiment corresponding to the ‘end’ of the reaction.
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1. Introduction

The most essential property of enzymes is their ability
to catalyze very specific chemical reactions of biological
importance. Some enzymes can increase the rate of a chem-
ical reaction by as much as 1012-fold over the spontaneous
rate of the uncatalyzed reaction [1], up to 1017-fold [2,
3], up to 1019-fold [4] or even up to 1023-fold [5]. To
quantitatively describe the activity of an enzyme, first of all,
the initial rate (or initial velocity) of the enzyme-catalyzed
reaction is used. The very notion of the initial rate implies

that the rate of the reaction in the course of time may
be different from the initial one, what may be caused by
several factors (see, e.g., [6]). To determine the rate of
the reaction (directly being possible only in special cases),
accumulation of the reaction product has to be monitored and
measured for some time. It is clear that during the time of
measurements the rate of product accumulation can change:
the greater is the time interval, the greater the change. On
the other hand, this interval cannot be chosen very short: the
quantity of the product accumulated has to be sufficient to
detect it and to measure its quantity. A variety of fine and
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sensitive methods are available at present to measure low
quantities of chemicals [1]. Because of high sensitivity of
these methods, the accuracy of the data obtained cannot be
high. It is necessary, therefore, to obtain sufficient amount
of experimental data and to apply statistical methods of data
analysis.

The methods of data analysis suggested in biochem-
istry (enzyme) textbooks (see, e.g.,[1, 2, 7, 8]), however,
mostly are based on linear models. Essentially non-linear
relationships are usually linearized. Quite often that means
making use of only a small fragment of available data, those
deviating from “theoretical” straight line being discarded. In
biochemical laboratories graphical methods (involving the
plots of the data on the graph paper and other paper work)
of data processing are still routinely used (see, e.g., [1, 6, 8]).

Equally important is the selectivity of the enzyme. That
can be characterized by quasi-equilibrium dissociation con-
stant or so-calledMichaelis constant. Again, to determine this
constant from the experimental data, inadequate methods are
used, involving coordinate transformation, the most favourite
being the double reciprocal or Lineweaver–Burk (linear) plot
(see, e.g., [1, 6, 8]). Linearisation (coordinate transformation)
seems to be considered the best way to prepare the data
for analysis and to present them, and it is popularized in
the textbooks. While that might have been convenient in
straight line fitting by hand (in the pre-computer era), it is
not justified at present (keeping in mind computer availability
and computer-literacy) because of extra difficulties in the
interpretation and parameter estimation associated with the
transformation-caused non-proportional change of the errors
making necessary to introduce (arbitrary) weights to reduce
the additional errors.

It is important to relate the conversion of substrate into
reaction product to the known properties of the enzyme. A
great variety of the enzyme properties have been established
up to date (see, e.g., [8]). It is clear that taking into
consideration all what is known makes the relationship
very cumbersome and virtually impracticable. On the other
hand, not all of those properties manifest themselves in the
observable progress curves. Presentation of those curves is
often misleading, the conditions of the reaction not being
specified (see, e.g., [1]).

In the present work, therefore, the simplest possible
relationships of the progress of enzyme-catalyzed reaction
with the kinetic properties of the enzyme has been analysed.
It has been shown that the initial rate of enzymatic reaction
(its efficacy) can be determined on the basis of a simplemodel
making use of all the experimental data, the estimation being
more accurate than that obtained rutinely by conventional
methods; the selectivity of the enzyme can be assesedwithout
any transformation, the estimation being better, again. It
should be pointed out that the the present analysis concerns
mainly the above relationships (not entering into details of
enzyme action), the modeling considered to be the most
concise and rigorous way to express the relationships.

2. Methods

Standard software was used. The algebraic and differential
equations or their systems were solved with Maple. Simple
Visual Basic macro functions for Microsoft Excel [9] were
used to numerically solve differential equations.

3. Results (General Considerations
andModelling)

3.1. Model 1. Inhibition by the reaction product is taken into
account.

3.1.1. States of the enzyme and the model based on the
states. The modelling is based on the scheme of interactions
presented in Figure 1 (bottom) in which different states
of the enzyme (being ligand-free or ligand-bound (i.e.,
substrate- or product-bound) denoted as E, ES and EP)
rather than the enzyme itself are considered. The states can
be characterized quantitatively; probabilities corresponding
to certain conditions can be ascribed to the states. The
scheme considered here reflects the same relationships as the
conventional one (top of Figure 1).

For steady state, supposing the algebraic sum of absolute
forward and backward rates of the transitions to be zero and
the sum of the probabilities of the enzyme to reside in either
state or corresponding relative concentrations being unity, it
follows from the scheme that

⎧⎪
⎨
⎪⎩

𝑐0𝛼𝑠 − 𝑐S𝛽 − 𝑐S𝜇 + 𝑐P𝜈 = 0,
𝑐0𝛾𝑠 − 𝑐P𝛿 + 𝑐S𝜇 − 𝑐P𝜈 = 0,
𝑐0 + 𝑐S + 𝑐P = 1.

(1)

Solutions of the above system are impractical to be presented
here. For 𝜇 ≪ 𝛽 and 𝜈 ≪ 𝛿 the cumbersome solutions
simplify to

𝑐0 =
𝔰

𝑠 + 𝔰 + (𝔰/𝔭)𝑝 , (2)

𝑐S =
𝑠

𝑠 + 𝔰 + (𝔰/𝔭)𝑝 , (3)

𝑐P =
𝑝

𝑝 + 𝔭 + (𝔭/𝔰) 𝑠 . (4)

Ignoring cS𝜇 and cP𝜈 directly in System (1) leads to the same
equations ((2)–(4)). Here s and p are current concentrations
of substrate and reaction product, 𝔰 = 𝛽/𝛼, 𝔭 = 𝛿/𝛾 and
𝔮 (below), dissociation constants. That will be reasoned in
Section 4.

3.1.2. Product accumulation. It is clear that the sum of
concentrations of the substrate (s) and that of the product (p)
remains constant and equal to the initial concentration (let it
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Figure 1: Schematic representation of enzyme-catalyzed reaction. Top: a conventional scheme. Bottom: the scheme equivalent to the former
but more convenient for shift to mathematical modelling of the progress of the reaction. The capital non-italic letters (E, ES, EP, S, P, S*,
P*) denote the enzyme (free or bound) and the substrate or product (free or bound), the corresponding lowercase italic letters (𝑐0, 𝑐S, 𝑐P, 𝑠,
𝑝), the probabilities of the enzyme states and the ligand concentrations, 𝛼𝑠, 𝛽, 𝛾𝑝, 𝛿, 𝜇, 𝑣 denoting relative rates of the transitions.

be s0) during the reaction. That makes one of the equations.
At the same time, the rate of the enzymatic conversion of
the substrate to product (the forward reaction) is proportional
to the concentration of the enzyme (let it be e0) and the
probability of the enzyme to be in state ES (3). The product
of the forward reaction is a substrate for the backward one
(ES ← EP) whose rate is proportional to the same e0 and
the probability of the enzyme to reside in EP state which is
expressed by eq. (4). The net rate makes another equation.
Thus

⎧⎪
⎨
⎪⎩

𝑠 + 𝑝 = 𝑠0,
d𝑝
d𝑡 = 𝑒0(

𝑠
𝑠 + 𝔰 + (𝔰/𝔭)𝑝𝜇 −

𝑝
𝑝 + 𝔭 + (𝔭/𝔰) 𝑠𝜈)

. (5)

For 𝜈 = 0 or 𝔭 → ∞ the solutions are

𝑠 = 𝔰𝑊 (
𝑠0
𝔰 exp (

𝑠0
𝔰 − 𝑒0

𝔰 𝜇𝑡)) (6)

and

𝑝 = 𝑠0 − 𝔰𝑊 (
𝑠0
𝔰 exp (

𝑠0
𝔰 − 𝑒0

𝔰 𝜇𝑡)) (7)

whereW is Lambert W function [10]; see Figure 2.
The 1st term of the right-hand side of the 2nd equation of

System (5) models the absolute rate of the forward reaction,
while the 2nd term does that of the backward one, the
fractions modelling the probabilities of the enzyme to be in
states ES and EP (see Figure 1 and Eqs. (3) and (4)). The
above terms can be usefully approximated.

3.1.3. Approximations at low product concentration. Prod-
uct concentration being low (p ≪ 𝑠0) and 𝔭 being finite,
the differential equation of product accumulation is (see
Appendix A):

d𝑝
d𝑡 ≈ 𝑒0 [

𝑠0
𝑠0 + 𝔰 (1 −

𝔰𝑝
(𝑠0 + 𝔰)𝔭)𝜇 − 𝔰𝑝

(𝑠0 + 𝔰)𝔭𝜈] (8)

and solution of the above equation under initial conditions
(let s(0) = s0, p(0) = 0) is:

𝑝 = (𝑠0 + 𝔰)𝑠0𝔭𝜇
𝔰 (𝑠0𝜇 + (𝑠0 + 𝔰)𝜈)

× [1 − exp(−
𝑒0𝔰

(𝑠0 + 𝔰)2𝔭 (
𝑠0𝜇 + (𝑠0 + 𝔰)𝜈) 𝑡)] .

(9)

This equation models product accumulation under various
conditions. The model is presented in Figure 2.

3.2. Model 2. No action of the reaction product is taken into
account. In this case the scheme of the reaction is (see [11]):

S & E ↔ ES → EP. (10)

Here it is sufficient to analyse only the 1st step (S & E↔ ES)
of the process. The model being simple can be extended for
any relationship between e0 and s0 (s0 < e0 < ∞). It follows
that (see (3b) in [11])

𝑐S =
𝑒0 + 𝑠 + 𝔰 −√(𝑒0 + 𝑠 + 𝔰)2 − 4𝑒0𝑠

2𝑒0
(11)

and, consequently,

d𝑠
d𝑡 = −d𝑝

d𝑡 = −𝜇
𝑒0 + 𝑠 + 𝔰 −√(𝑒0 + 𝑠 + 𝔰)2 − 4𝑒0𝑠

2 .
(12)

Solutions of this equation are depicted in Figure 3. For
observable (finite) affinity of the product molecule and that
of the enzyme Model 2 (scheme (10)) is not applicable.

3.2.1. Approximation at low initial substrate concentration
(the single-turnover approach). At low initial substrate con-
centration (𝑠0 ≪ 𝔰) and in the absence of product action
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Figure 2: Reaction product accumulation (rising) and substrate exhaustion (declining; high substrate concentration). A. No effect of product
on the reaction progress being taken into account; inhibition of the reaction by the product and the backward reaction being taken into
account. B. Various product dissociation constants, 𝔭. C. Various rates of the backward reaction, 𝜈, the dissociation constants of substrate
and product with the enzyme being equal (𝔭/𝔰 = 1). D. Various dissociation constants of the substrate with the enzyme, s, initial substrate
and enzyme concentrations being constant (𝑠0 = 1, 𝑒0 = 0.001), no inhibition by the reaction product (𝔭 → ∞); the exponential decline is
also depicted (exp(…)). E. Various concentrations of the enzyme, no inhibition by the reaction product (𝔭 → ∞).

on the enzyme (𝔭 → ∞) the rate of substrate exhaustion
and product accumulation can be approximated (see (12) and
Appendix A) as follows:

d𝑠
d𝑡 = −d𝑝

d𝑡 ≈ − 𝑒0
𝑒0 + 𝔰𝜇𝑠 (13)

the solution of the above equation being exponential (see
Figure 3).

3.3. The case of 2 reaction products. The scheme depicted
in Figure 1 represents a reaction in which consideration
of a single product is sufficient. A more sophisticated
enzyme-catalyzed reaction still feasible for analysis would
be a reaction resulting in 2 products (Figures 4 and 5).
5 states of the enzyme have to be considered (Figure 4)
now: ligand-free (E), substrate-bound (ES), product1-bound
(EP), product2-bound (EQ) and both products-bound (EPQ).
Correspondingly, a system (analogous to System (1)) of 5
algebraic equations with regard to those states has to be
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Figure 3: Reaction product accumulation (rising) and substrate
exhaustion (declining; low substrate concentration) at constant
enzyme concentration, fixed substrate–enzyme dissociation con-
stant (𝑒0 = 100, 𝔰 = 100) and varying initial substrate concen-
trations, no inhibition by the reaction product (𝔭 → ∞); the
exponential decline and corresponding rise is also depicted.

composed. Solutions of this system with respect to states ES
and EP (assuming q ≡ p) are:

𝑐S =
𝑠

𝑠 + 𝔰 + (𝔰/𝔭)𝑝 + (𝔰/𝔮)𝑝 + (𝔰/𝔭𝔮)𝑝2
; (14)

𝑐P =
𝑝2

𝑝2 + 𝔭𝔮 + (𝔭 + 𝔮)𝑝 + (𝔭𝔮/𝔰)𝑠
. (15)

On the basis of (14) and (15) and taking into account
that s + p = const (it is assumed to be s0) a system of
differential equations analogous to System (5) has been
composed. Model curves corresponding to the solutions of
the system are presented in Figure 5.

4. Discussion (Model Analysis and Further
Modelling)

Not using the subscripts in the notations of rate constants,
arithmetic signs (+) in the scheme and avoiding to use
the brackets (denoting the probabilities of the states and

the relative concentrations by lowercase letters (c0, cS,
cP, s, p) corresponding to the states (E, ES, EP, S, P))
facilitates the “translation” of the scheme into mathematical
equations expressing the relationships of the states, rates
and concentrations; besides, the modified scheme is visually
suggestive. Switching to the equations from the conventional
schemes (with multi-character symbols) would be neither
simple nor clear. (9), e.g., would become unintelligible.
Moreover, in the textbooks the chemical transformation of
the complexed enzyme is often ignored in the scheme, the
complex EP (Figure 1, top) being omitted (see, e.g., [1, 2, 8];).
The rates of transitions sometimes are omitted from the
schemes although used in the text [12] or denoted rather
inaccurately (the direct reaction rates being denoted as k−1,
k−2,…, i.e., with the “minus” signs) [13].

The dissociation constants used in the equations are
related to corresponding ligands and have the same dimen-
sion as the ligands. The notations used (𝔰, 𝔭, 𝔮), therefore,
seem to be quite justified.

The assumption that 𝜇 ≪ 𝛽 and 𝜈 ≪ 𝛿 means that
the rate constants of the reversible chemical transitions of
the enzyme–ligand complexes (ES ↔ EP) are considerably
lower than those of ligand un-binding (E ← ES or E
← EP). That corresponds to reducing the closed scheme
(Figure 1) to the open one in which the transitions 𝜇 and
𝜈 are omitted or considering the rapid equilibrium model
rather than the steady state one. The enzyme-catalyzed
reaction is considered, therefore, to proceed as two separate
and independent processes: 1) interactions between ligand
and enzyme molecules and 2) chemical transitions of the
enzyme–ligand complexes (ES ↔ EP). In the fast processes
of interactions the low rate constants (𝜇 and 𝜈) can be ignored
((2)–(4)) while these constants determine the progress of
(slow) chemical reaction (System (5)), the states (E, ES
and EP) and corresponding probabilities (e0, eS and eP)
being determined by (2)–(4). The processes of interactions
correspond to the specificity of the enzyme, the following,
to its efficacy. Such division may be useful when the ligand
molecule does not undergo any transformation beyond the
binding or chemical transformation of it is not considered
(see, e.g., [14–19]).

It is interesting to note that neither the above schemes
nor System (5) incorporate the rate of chemical reaction
proceeding spontaneously (without the enzyme), neither the
specificity nor efficacy depending on this rate. Conversely,
therefore, the enzyme-caused increase in the above rate
occurs, presumably, due to high specificity (low dissociation
constant, 𝔰), high efficacy (high rate of the conversion,
𝜇), each independently, and both independently of the
spontaneous rate.

System (5) is equivalent to the scheme and adequately
models the conversion of substrate to product (S* → P*)
containing 4 independent parameters (𝔰, 𝔭, 𝜇 and 𝜈) which
can be estimated by comparing the model with experimental
data. (6) and (7) involve Lambert W function which is
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Figure 4: Simplified representation of enzyme-catalyzed reaction producing 2 products. Here 𝔰, 𝔭, and 𝔮 are dissociation constants of
substrate and products with the enzyme.

Figure 5: Product accumulation and substrate exhaustion in the
reaction resulting in 2 products. Enzyme concentration, substrate
and enzyme dissociation constant and initial substrate concentration
(𝑒0 = 0.01, 𝑠 = 0.1 and 𝑠0 = 1 arbitrary unit) are the same
throughout. No effect of product on the reaction progress being
taken into account (𝔭 → ∞, 𝔮 → ∞), inhibition of the reaction
by its product (𝔭 = 0.1 and 𝑞 → ∞, 𝔭 = 0.1 and 𝑞 = 0.1), the
backward reaction (𝔭 = 0.1 and 𝔮 = 0.1, 𝜈/𝜇 = 0.5) being taken
into account.

solution of the transcendental equation W(z) × exp(W(z)) =
z and cannot be expressed via elementary functions, besides,
these equations are simplifications. (The curves modelled by
these equations can be plotted using Maple, Mathematica or
others. System (5) can be solved numerically usingMicrosoft
Excel or other software.)

As seen from (9), reaction product accumulation (product
accumulation rate rather than reaction velocity seems to be
more appropriate notion in the present analysis) deviates
from linearity for any observable affinity of the product
molecule and that of the enzyme (1/𝔭 ≠ 0), independently
of taking place or not of the backward reaction (𝜈 ≠ 0 or

𝜈 = 0), the deviation depending both on the enzyme and
initial substrate concentrations (e0 and s0). It is clear that the
deviation can be ignored for a short period of time. Although
(9) at first glance may look cumbersome, its parameters of
similar meaning are denoted by similar symbols and grouped
together making the equation clear and simple. Expression of
the same relationship using the conventional notations would
make the equation incomprehensible.

It should be noted that the reaction progress curves
corresponding to high initial substrate concentrations (all the
other parameters including the dissociation constant(s) being
the same) are not convenient to present on the same graph
because of the scale. For this reason, the initial substrate
concentration is assumed to be the same (1 arbitrary unit)
for all the curves, the dissociation constant(s) for different
curves being different. Numerical solutions of system (5) for
fixed initial conditions (s(0) = s0 and p(0) = 0) and various
values of 𝔰, 𝔭, 𝜇 and 𝜈 are presented in Figure 2.

In spite of the non-linearity (both theoretical and exper-
imental), usually only the so-called initial velocity of the
reaction is estimated from experimental data by drawing
the straight line tangent to the curve approximating (rather
arbitrarily) the data, valuable information (often most of
it) contained in the data not being used. Use of (9) for
comparison with experimental data of product accumulation
to extract information concerning the unknown parameters
is impractical, however, because of too many parameters
(𝔰, 𝔭, 𝜇 and 𝜈) contained in it.

It should be noted that presenting the enzyme-catalyzed
reaction as in the above schemes (either the conventional
one or its modification, Figure 1, Model 1) assumes tacitly
that the substrate concentration is high enough enabling
to ignore the difference in the concentrations of free and
enzyme-bound substrate. Usually, it is assumed that the
enzyme concentration is low compared to that of the substrate
(e0 ≪ s0). The assumption that the reaction is not inhibited
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by the product (its dissociation constant, 𝔭, being high)
enables to simplify the reaction scheme as shown in the
scheme (10) and that in turn allows to extend the range of
substrate concentration (0 < s < ∞) independently of e0
considering the binding rate to be proportional to s – e0
(Model 2). (Similar extension of Model 1 would make it too
cumbersome).

4.1. Comparing of approximate models with experimental
data. Modelling the non-linear product accumulation (the
non-linearity being caused solely by product accumulation) is
rather straightforward. Indeed, let the substrate concentration
be high (s0 >> e0) and the rate of substrate conversion into
the product (without taking into account the effect of the
product on the reaction) be proportional to 𝜇s0/(s0 + 𝔰), (the
fraction considered as the degree of saturation of the enzyme
by the substrate). It seems reasonable to assume the result of
the product action on the deviation of product accumulation
from the straight line to be proportional to its concentration,
p, independently of the causes of the non-linearity (the causes
may be different from those considered here (e.g., thermal
degradation of the enzyme, product metabolism by other
enzyme(s) etc., see, e.g., [15, 16])); let the coefficient of
proportionality be 𝜔. Then

d𝑝
d𝑡 = 𝑒0

𝑠0
𝑠0 + 𝔰𝜇 − 𝜔𝑝. (16)

The right-hand side of the above equation is of the same form
as that of (8). Its solution under the same conditions is

𝑝 = 𝑒0
𝑠0

𝑠0 + 𝔰
𝜇
𝜔 (1 − exp(−𝜔𝑡)) , (17)

i.e., the solution is of the same form as that of (9) and,
as a matter of fact, equivalent to (9). It can be reminded
that the latter follows from System (5) in which (3) and
(4), i.e, approximations concerning the rate constants are
used. Parameter 𝜔 here is auxiliary. (17) (as well as (9))
models both the dependence of the reaction progress on the
initial substrate concentration (the fraction) and non-linearity
(the bracketed term). It can be compared with experimental
data. In such a comparison all the experimental data can be
used. To obtain the best accuracy, the least squares method
(minimization of sum of the squares of differences between
the model and the data) can be applied; that can be done
automatically by Microsoft Excel add-in “Solver” (see, e.g.,
[20–22]). Fitting of numerically integrated rate equations to
the data is widely used (see, e.g., [23]).

Initial substrate concentration being much lower than
that of the enzyme (𝑠0 ≪ 𝑒0) and, as a consequence, the
backward reaction being absent, corresponds to so-called
single-turnover experiment (see [8]). Under these conditions
the substrate practically can be only in enzyme-bound (but
not in enzyme-free) state, the transition being possible only
from the enzyme-bound substrate to the enzyme-bound
product (S*→ P*). The reaction is modelled by the solution

of (13). The substrate depletion under these conditions is
exponential. In the single-turnover approach, however, the
concentrations of the substrate and the product are of the
same order but no product action (assumed to be absent in this
approach) on the reaction can be taken into account. Along
with the initial enzyme concentration, e0, the substrate–
enzyme dissociation constant, 𝔰, is of importance in the
single-turnover approach (see (13) and Figure 3).

4.2. Selectivity of the enzyme. Equation (3) adequately
models the selectivity. Product action on the reaction being
negligible (1/𝔭 → 0), (2) and (3) are reduced to expressions
which are usually referred to as Henri–Michaelis–Menten
[1, 8] or even justMichaelis–Menten equations [2]. Frère [24]
and Kühl [25] remind that the equation was derived by Henri
(in 1903) and published 10 years earlier than by Michaelis
and Menten (in 1913). Equations (2)–(4) can be considered
as extension of Henri–Michaelis–Menten relationships. It
should be pointed out that 𝔰 = 𝛽/𝛼 is dissociation rather than
so-called Michaelis or steady state kinetic [1] constant (K𝑚)
which in the present notations would be K𝑚 = (𝛽 + 𝜇)/𝛼.It
is believed that “K𝑚 is less than, greater than, or equal to” 𝔰
[1]. It is easy, however, to see that 𝔰 = 𝛽/𝛼 ≤ (𝛽 + 𝜇)/𝛼 = K𝑚
for any 0 ≤ 𝜇 ≤ ∞ and s ≈ K𝑚 for 𝜇 ≪ 𝛽. This conclusion
seems reasonable, since the transition of the enzyme from
substrate- to product-bound state (ES → EP) is supposed
to involve conformational change which is thought to be
slower than substrate association or dissociation (E ↔ ES).
The possibility of the opposite inequality is also formally
considered [12].

The relationship between the initial rate of product
accumulation and substrate concentration resulting from the
reaction corresponds to the dependence of probability of
the enzyme to be in state ES on substrate concentration
ignoring any possible action of the product on the reaction
(ignoring any affinity of the product to the enzyme, 𝔭 → ∞).
Simplification of (3) results in

𝑐S ≈
𝑠

𝑠 + 𝔰. (18)

Direct application of this model for analysis of experimental
data (without any transformation), being very simple and
clear (being no problem if any computer spreadsheet is used),
enables the best accuracy of the parameter 𝔰 estimation.
For the best fit of the model to the data the least squares
method can be applied [20–22]. If experimental data suggest
a decline after the rise (probably caused by excess of substrate
concentration (see [14, 17])), these data points should not be
used for parameter estimation. If the data suggest a different
slope of the curve (perhaps because of allostericity), the
model (18) is not applicable (see, e.g., [19]).

4.3. Parameter estimation. Marangoni [6] suggests that
model parameters (only the transition rate constant and the
affinity of the substrate and enzyme molecules (𝜇 and 𝔰,
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in the present notations) are considered, the reaction being
non-reversible) can be estimated from a single progress
curve. Indeed, (6) and (7) contain both 𝜇 and 𝔰, these
parameters determining the shapes of the curves; conversely,
the parameters being possible (in principle) to be estimated
from the curves. There is no problem to estimame the rate of
the reaction. It should be reminded, however, that the shape
of the curves also depends on the enzyme and initial substrate
concentrations (e0 and s0): at high substrate concentration
(𝑠0 > 𝔰) its decline is with a clear break (and, therefore, most
informative), deviating considerably from the exponential,
but without a break at low substrate concentration (see Figs.
2D and 3). That makes the use of the information contained
in the curve possible only at high substrate concentration.
Besides, experimental data of the reaction progress “until
its end” are necessary. Marangoni [6] suggests graphical
estimation of the parameters. Goudar et al. [10] suggest
direct fitting to the (algorithmic) solution the transcendental
equation leading to the LambertW function. Approximations
of System (5) or (17) are clearer and more useful.

Parameter 𝔰 can be estimated from comparison of (18)
with the corresponding data, direct fitting enabling better
estimation as stated above. From comparison of the solution
of (14) with experimental data, parameter 𝜇 can be estimated;
additionally, the estimate of the auxiliary parameter (𝜔)
characterising the shape of the reaction progress curve
determined by the action of the product on the enzyme (inde-
pendently of the backward reaction) follows immediately
from the comparison of (17) with the data. (This additional
parameter can be used in practice without separation of the
dissociation constant of the product and the enzyme from the
rate constant of the backward reaction.) The parameter𝜔 used
in (16) and (17) and characterising the non-linearity of the
product accumulation is related to the intrinsic parameters
(𝔭 and 𝜈) of the enzyme (see Figure 1, System (5) and (9));
that relation makes an equation necessary to find the latter
parameters. Another equation is based on the relationship
between the substrate and product concentrations resulting
from the indefinite progress of the reaction. It is clear that
under these conditions eS/eP = 𝜈/𝜇 (see Figure 1 and (3) and
(4)) in the transition ES↔ EP. Thus (see Appendix A):

𝔭 = 𝔰 𝑒0𝑠0𝑝∞𝜇
(𝑠0 + 𝔰) (𝑝∞(𝑠0 + 𝔰)𝜔0 − 𝑒0𝜇𝑠∞)

(19)

𝜈 = 𝑒0𝑠0𝑝∞𝜇2

(𝑠0 + 𝔰) (𝑝∞(𝑠0 + 𝔰)𝜔0 − 𝑒0𝜇𝑠∞)
(20)

where 𝜔0 is experimentally established parameter corre-
sponding to e0 and s0; s∞ and p∞ are substrate and product
concentrations resulting from the indefinite progress of the
reaction. (19) and (20) enable, therefore, estimation of the
constants of the backward reaction (𝔭 and 𝜈).

Numerical solving of differential equations is not nec-
essary for parameter estimation (used here only to present

the curves on the graphs). All the parameters of the system
(i.e., the kinetic parameters of the enzyme, see Figure 1 and
System (5)) can be estimated, therefore, from comparing the
reaction product accumulation with simple models (ordinary
algebraic functions). No experiments carried out under
different conditions are required to estimate the parameters
characterizing the inhibition of the reaction, only the ‘final’
substrate and product concentrations being necessary.

In the case of the reaction resulting in 2 products (see
Figure 4 and (14) and (15)), molar concentrations of both
products are the same (q ≡ p), their affinities to the enzyme,
however, in general are not identical (𝔮 ≠ 𝔭). As seen from
(14), if the action of the reaction products on its progress
is negligible (both 𝔭 → ∞ and 𝔮 → ∞), it is reduced to
the Henri hyperbola (18); substrate exhaustion and product
accumulation are modelled by (6) and (7) like in the one-
product reaction (cf. Figure 2A, B, D, E and Figure 5). If
the action on the enzyme of any one reaction product can
be ignored (either 1/𝔭 = 0 or 1/𝔮 = 0), (14) is reduced to
(3); approximations (subsubsection 3.1.3) hold true in this
case (cf. Figures 2A and 5). It is clear as well (see (15)) that
the backward reaction is possible only when the affinities of
both products to the enzyme are finite (both 1/𝔭 ≠ 0 and
1/𝔮 ≠ 0). If one of the reaction products is equivalent to that
present in the solution (e.g., H2O) whose concentration is
practically independent of the reaction, it can be considered
as one product reaction analysed above.

5. Conclusions

Modification of the conventional scheme of the enzyme-
catalyzed reaction facilitates the use of mathematics. The
‘linear’ decline of the substrate concentration (or rise of
product concentration) is modelled by the equation depend-
ing on the enzyme and initial substrate concentrations
(Model 1); the exponential decline corresponds to Model 2.
Numerical solving of differential equations is not necessary
for parameter estimation.

1. Approximations of the general equation enable estima-
tion of the kinetic parameters of the enzyme (including
those characterizing inhibition of the reaction by
the product and the backward reaction) from the
data of conventional experiments and an additional
experiment carried out under the same conditions
corresponding to the ‘end’ of the reaction.

2. The equation obtained enables modelling both linear
and non-linear product accumulation.

3. Initial rate of product accumulation rather than initial
velocity of enzyme-catalyzed reaction is more appro-
priate notion concerning the process.

4. Direct application of non-linear equation to experi-
mental data of product accumulation enables better
estimation of the enzyme turnover.
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5. Direct fitting (without any transformations) of Henri
hyperbola to experimental data concerning the depen-
dence of product accumulation rate on substrate con-
centration enables better estimation of the enzyme
selectivity.

Appendix A

For p≪ s0 (thus for s= s0 – p≈ s0) and 1/𝔭 > 0, the fractions
of the 2nd equation of System (5) are (see subsection 3.1.2):

𝑠
𝑠 + 𝔰 + (𝔰/𝔭)𝑝 = 𝑠0

(𝑠0 + 𝔰) (1 + (𝔰/𝔭)𝑝/(𝑠0 + 𝔰))

≈ 𝑠0
𝑠 + 𝔰 (1 −

𝔰
𝔭(𝑠0 + 𝔰)𝑝)

(A.1)

for the forward reaction, and for the backward one:

𝑝
𝑝 + 𝔭 + (𝔭/𝔰) 𝑠 ≈

𝑝
𝔰𝔭/𝔰 + 𝑠0𝔭/𝔰

= 𝔰
𝔭(𝑠0 + 𝔰)𝑝. (A.2)

It follows from System (5), taking into account expressions
(A.1) and (A.2):

d𝑝
d𝑡 ≈ 𝑒0 [

𝑠0
𝑠0 + 𝔰 (1 −

𝔰
(𝑠0 + 𝔰)𝔭𝑝)𝜇 − 𝔰

(𝑠0 + 𝔰)𝔭𝑝𝜈] .
(A.3)

It follows from equation (11) that

d
d𝑠

𝑒0 + 𝑠 + 𝔰 −√(𝑒0 + 𝑠 + 𝔰)2 − 4𝑒0𝑠
2𝑒0

=
1 − 𝑠 − 𝑒0 + 𝔰

√(𝑒0 + 𝑠 + 𝔰)2 − 4𝑒0𝑠
2𝑒0

(A.4)

and for low s

lim
𝑠→0

1 − 𝑠 − 𝑒0 + 𝔰
√(𝑒0 + 𝑠 + 𝔰)2 − 4𝑒0𝑠

2𝑒0
= 1
𝑒0 + 𝔰 (A.5)

From which follows equation (13) in Subsection 3.2.1 of the
main text. Comparing the exponential terms of equations (9)
and (17) and taking into account cS/cP = 𝜈/𝜇 (see equations
(3) and (4) in Subsection 3.1) results in the system

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑒0𝔰(
𝑠0

𝑠0 + 𝔰𝜇 + 𝜈)
(𝑠0 + 𝔰)𝔭 = 𝜔0,

𝑠∞ (𝑝∞ + 𝔭 + (𝔭/𝔰)𝑠∞)
𝑝∞ (𝑠∞ + 𝔰 + (𝔰/𝔭)𝑝∞)

= 𝜈
𝜇 .

(A.6)

Solution of this system results in equations (19) and (20) in
Subsection 4.3 of the main text.
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