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Abstract. In this paper, we propose a mathematical study of the relationship between
population dynamics and economic growth. To do this, the total population is divided into three
disjoint classes: employed, unemployed and economically inactive population. On the one hand,
the evolution of the number of individuals in each compartment is described by Verhulst model
and on the other hand the economic growth is governed by the Solow equation. The resulting
model is a system of differential equations with time delay. The dynamics, of this system, are
studied in terms of local stability and of local Hopf bifurcation. Some numerical simulations
are given to illustrate our theoretical results. Additionally we conclude with some remarks.
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1. Introduction

The relationship between population dynamics and economic growth has long attracted the
attention of researchers in economics and demography. These empirical studies have led to
conflicting conclusions. Faced with these controversies, some researchers in applied mathemat-
ics focused their magnifying glasses in order to analyze theoretically this problematic. These
researches have concluded, in this case a very complex relationship between population and
economic growth.

In this work, we follow the ideas in [3, 10, 16, 22], to model the interaction between the
population dynamic and economic growth. We divide the total population into three disjoint
classes: employed population (all persons who perform some work for pay or profit), unem-
ployed population (all persons seeking work) and economically inactive population (attendant
at educational institutions, retired, engaged in family duties and other economically inactive).
On the one hand, we describe the evolution of the number of individuals in each compartment
by Verhulst model and on the other hand we combine the resulting equations with the Solow
model of economic growth. In this way, we obtain the following delay differential system:

𝑑𝐾
𝑑𝑡 = 𝑠𝑓(𝐾(𝑡), 𝐿(𝑡)) − 𝛿𝐾(𝑡),

𝑑𝐿
𝑑𝑡 = 𝛾𝑝𝑁(𝑡) [1 −

𝐿(𝑡 − 𝜏)
𝐿𝑒 ] ,

𝑑𝑁
𝑑𝑡 = 𝜌𝑁(𝑡) [1 −

𝑁(𝑡)
𝑔(𝐾(𝑡), 𝐿(𝑡))] ,

(1)
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where 𝐾 is the capital stock, 𝐿 is the size of the employed population, 𝑁 is the total number
of population, 𝑝 is the unemployed rate, 𝑠 is the saving rate, 𝛿 is the depreciation rate of capital
stock, 𝛾 is the employment rate, 𝜌 is the population growth rate, 𝑓 is the production function,
𝐿𝑒 is the effective labor demand (the total demand for employees in the labor market) [10, 16],
𝑔 is the carrying capacity and 𝜏 is the time needed to assess needs for labor force and the time
taken for the recruitment of this labor force [12].

The first model in this optic is presented by Slow and Swan [22, 23]. This model is gouverned
by the following ordinary differential equation:

𝑑𝐾
𝑑𝑡 = 𝑠𝑓(𝐾(𝑡), 𝐿0𝑒𝑛𝑡), (2)

here the author has assumed that the function 𝑓 is with constant returns to scale, the growth rate
of labor 𝑛 and the savings rate 𝑠 are constant. The contribution of the model (2) is to show the
effect of the capital stock and the labor force on the total output of a nation.

In (2006, [15]), Guerrini has considered the SolowSwan growth model with nonconstant
labor growth rate as follows:

𝑑𝑘
𝑑𝑡 = 𝑠𝑓(𝑘(𝑡)) − (𝛿 + 𝑛(𝑡))𝑘(𝑡), (3)

where 𝑘 = 𝐾
𝐿 is the capital-labor ratio (per capita capital), 𝛿 is the depreciation rate of capital

stock, and 𝑛(𝑡) is the population growth rate.
In his conclusion, the author has observed that the per capita capital of a country will tend

to stabilize to the non-trivial steady state of the system (3), independently of its initial value.
In addition, he reported that two countries with same initial per capita capital and with two
different labor growth rate will stabilize to the same per capita capital if the limits of their labor
growth rates are equal.

In (2010, [3]), Cai proposed an economic growth model with endogenous carrying capacity
as follows:

𝑑𝐾
𝑑𝑡 = 𝑠𝑓(𝐾,𝐿) − 𝛿𝐾,

𝑑𝐿
𝑑𝑡 = 𝛾𝐿 [1 −

𝐿
𝑔(𝐾)] ,

(4)

In his work, Cai has proved that the dynamical system (4) has one, two or three equilibria
under different conditions and that this system undergoes a saddle-node bifurcations and the
associated economy has multiple growth paths under the specified parameters. The author has
observed the “Malthusian trap” which appears in the economy when the technological level
and the saving rate are low or the carrying capacity grows slowly. However, the economy can
escape the “Malthusian trap” by promoting technological levels or the saving rate or having
high carrying capacity growth rate. In (2012, [2]), the author has proved that if the system (4)
has a unique non trivial equilibrium, then it is asymptotically stable. Furthermore, he showed,
by qualitative analysis, that the demographic transition appears under the interaction between
economic growth and human population carrying capacity.
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In (2013, [14]), Guerrini and Sodini have introduced the same time delay in the production
function and in the logistic equation of the evolution of the working population. The resulting
model is the following delayed differential system:

𝑑𝐾
𝑑𝑡 = 𝑠𝑓(𝐾(𝑡 − 𝜏), 𝐿) − 𝛿𝐾,

𝑑𝐿
𝑑𝑡 = 𝛾𝐿[𝑎 − 𝑏𝐿(𝑡 − 𝜏)],

(5)

Here, the authors have considered the logistic equation with constant carrying capacity and they
showed that the time delay is a source of cyclical behavior in the model (5).

In (2013, [13]), Guerrini proposed the following generalization of the model (4):

𝑑𝐾
𝑑𝑡 = 𝑠𝑓(𝐾(𝑡 − 𝜏), 𝐿(𝑡)) − 𝛿𝐾(𝑡 − 𝜏),

𝑑𝐿
𝑑𝑡 = 𝛾𝐿 [1 −

𝐿(𝑡)
𝑔(𝐾(𝑡))] ,

(6)

In this model, Guerrini introduced the time delay in production function and in capital depreci-
ation function. He assumed that there is full employment in the economy, so that employment
and labor supply coincide, i.e. L = N. He proved that the system (6) loses stability and a Hopf
bifurcation occurs when the time delay passes through critical values.

Recently, we proposed the following model of mutual interactions between the economically
active population and the economic growth [12]:

𝑑𝐾
𝑑𝑡 = 𝑠𝑓(𝐾(𝑡), 𝐿(𝑡)) − 𝛿𝐾(𝑡),

𝑑𝐿
𝑑𝑡 = 𝛾𝐿(𝑡) [1 −

𝐿(𝑡 − 𝜏)
𝑔1(𝐾(𝑡 − 𝜏))] .

(7)

We have assumed that economy is not at full employment (𝐿 < 𝑁) and they showed that a time
delay in recruitment process can destabilize the system (7) giving birth to economic fluctuations.

In all the aforementioned works, the authors concentrate on the relationship between
employed population and economic growth. Our main contribution in this paper is to extend the
analysis of this relationship to include the effect of total population and unemployed population.
To do this, we study the dynamics of the system (1) in terms of local stability and of the
description of the Hopf bifurcation, that is proven to exist as the delay cross some critical
values.

2. Local Stability and Hopf Bifurcation Analysis

We assume that

(𝐻1): the functions 𝑔 is twice continuously differentiable,

(𝐻2): 𝑓(𝐾,𝐿) = 𝐴𝐾𝛼𝐿1−𝛼 (see, [5, 22]),

where 𝐴 is a positive constant that reflects the level of the technology and 𝛼 ∈ (0, 1) is the
elasticity between capital and labor.
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2.1. Equilibria

Proposition 1. The system (1) has two equilibria: the trivial equilibrium 𝐸0 = (0, 0, 0) and
the nontrivial equilibrium 𝐸1 = (𝐾∗, 𝐿𝑒, 𝑔(𝐾∗, 𝐿𝑒)), where 𝐾∗ = ( 𝑠𝐴𝛿 )

1
1−𝛼𝐿𝑒.

Proof. To find equilibria, we consider the following system:

𝑠𝐴𝐾𝛼𝐿1−𝛼 − 𝛿𝐾 = 0,

𝑁 [1 −
𝐿
𝐿𝑒 ]

= 0,

𝑁 [1 −
𝑁

𝑔(𝐾,𝐿)] = 0,

𝐿(𝑡) ≤ 𝑁(𝑡).

(8)

It is easy to verify that (0, 0, 0) is a solution of the system (8), thus 𝐸0 = (0, 0, 0) is a trivial
equilibrium of the system (1). In the following, we prove that 𝐸1 = (𝐾∗, 𝐿𝑒, 𝑔(𝐾∗, 𝐿𝑒)) is the
unique nontrivial equilibrium of the system (1).

(𝐾∗, 𝐿∗, 𝑁∗) is a positive solution of the system (8) if and only if

𝑠𝐴𝐾𝛼
∗𝐿1−𝛼

𝑒 − 𝛿𝐾∗ = 0,

𝐿∗ = 𝐿𝑒,

𝑁∗ = 𝑔(𝐾∗, 𝐿∗).

(9)

It’s clear that the first equation of (9) has a unique solution 𝐾∗ = ( 𝑠𝐴𝛿 )
1

1−𝛼𝐿𝑒. This concludes the
proof.

2.2. Stability and Hopf bifurcation analysis

By analyzing the characteristic equation associated to (1), we determine necessary conditions
for the linear stability and Hopf bifurcation around the equilibrium 𝐸1.

Consider the change of variables 𝑥 = 𝐾 − 𝐾∗, 𝑦 = 𝐿 − 𝐿∗ and 𝑧 = 𝑁 − 𝑁∗. Then by
linearizing system (1) around (𝐾∗, 𝐿∗, 𝑁∗) we have

𝑑𝑥
𝑑𝑡 = (𝛼 − 1)𝛿𝑥 + 𝑠𝜕𝑓(𝐾∗, 𝐿∗)

𝜕𝐿 𝑦,

𝑑𝑦
𝑑𝑡 = −𝛾𝑝𝑦𝜏 ,

𝑑𝑧
𝑑𝑡 = 𝜌𝜕𝑔(𝐾∗, 𝐿∗)

𝜕𝐾 𝑥 + 𝜌𝜕𝑔(𝐾∗, 𝐿∗)
𝜕𝐿 𝑦 − 𝜌𝑧.

(10)

The characteristic equation associated to system (10) takes the form:

𝜆3 + 𝐴𝜆2 + 𝐵𝜆 + 𝐶 + (𝐷𝜆2 + 𝐸𝜆 + 𝐹)𝑒−𝜆𝜏 = 0, (11)
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where

𝐴 = (1 − 𝛼)𝛿 + 𝜌, 𝐵 = (1 − 𝛼)𝛿𝜌, 𝐶 = 0, 𝐷 = 𝛾𝑝,

𝐸 = [(1 − 𝛼)𝛿 + 𝜌]𝛾𝑝, 𝐹 = (1 − 𝛼)𝛿𝜌𝛾𝑝.

Before giving our main result, we need the following lemma.

Lemma 2. Consider the equation:

ℎ(𝑧) ∶= 𝑧3 + 𝑎𝑧2 + 𝑏𝑧 + 𝑐 = 0. (12)

where

𝑎 = (1 − 𝛼)2𝛿2 + 𝜌2 − 𝛾2𝑝2,

𝑏 = (1 − 𝛼)2𝛿2𝜌2 − 𝛾2𝑝2[(1 − 𝛼)2𝛿2 + 𝜌2],

𝑐 = −𝛾2𝑝2(1 − 𝛼)2𝛿2𝜌2.

Then 𝑧0 = 𝛾2𝑝2 is a simple positive root of the equation (12).

Proof. It is easy to verify that

ℎ(𝛾2𝑝2) = 0

and

ℎ′(𝛾2𝑝2) = 40𝛾4𝑝4 + 7[(1 − 𝛼)2𝛿2𝜌2]𝛾2𝑝2 + (1 − 𝛼)2𝛿2𝜌2 > 0.

Thus 𝑧0 = 𝛾2𝑝2 is a simple positive root of the equation (12).

The objective of the following theorem is to investigate the local stability and the existence
of a Hopf bifurcation of the system (1) at the equilibrium 𝐸1.

Theorem 3. If the hypotheses (𝐻1) and (𝐻2) hold, then there exists a critical positive delay 𝜏0
such that,

1. for 𝜏 ∈ [0, 𝜏0), the equilibrium 𝐸1 of the system (1) is locally asymptotically stable;

2. for 𝜏 > 𝜏0, the equilibrium 𝐸1 of the system (1) is unstable;

3. for 𝜏 = 𝜏0, a Hopf bifurcation of periodic solutions of system (1) occurs at the equilibrium
𝐸1.

Proof. The equation (11) is equivalent to

(𝜆 + (1 − 𝛼)𝛿)(𝜆 + 𝜌)(𝜆 + 𝛾𝑝𝑒−𝜆𝜏) = 0. (13)

For 𝜏 = 0, all roots of equation (13) are strictly negative.Moreover, there exists a critical positive
delay 𝜏0 such that the equation (13) has a simple pair of pure conjugate imaginary roots ±𝛾𝑝𝑖.
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Next, we need to calculate 𝜏0 and to verify the transversally condition.
Let 𝜆(𝜏) = 𝑢(𝜏) + 𝑖𝑣(𝜏) be the root of (11). Thus,

𝑢3 − 3𝑢𝑣2 + 𝐴𝑢2 − 𝐴𝑣2 + 𝐵𝑢 + 𝐶 = −exp(−𝑢𝜏){𝐷𝑢2 cos(𝑣𝜏)

− 𝐷𝑣2 cos(𝑣𝜏) + 𝐸𝑢 cos(𝑣𝜏) + 𝐹 cos(𝑣𝜏) + 2𝐷𝑢𝑣 sin(𝑣𝜏) + 𝐸𝑣 sin(𝑣𝜏)}, (14)

and

3𝑢2𝑣 − 𝑣3 + 2𝐴𝑢𝑣 + 𝐵𝑣 = − exp(−𝑢𝜏){2𝐷𝑢𝑣 cos(𝑣𝜏)

+ 𝐸𝑣 cos(𝑣𝜏) − 𝐷𝑢2 sin(𝑣𝜏) + 𝐷𝑣2 sin(𝑣𝜏) − 𝐸𝑢 sin(𝑣𝜏) − 𝐹 sin(𝑣𝜏)}. (15)

To calculate 𝜏0, we set 𝑢(𝜏0) = 0 and 𝑣(𝜏0) = 𝛾𝑝 into the two equations (14) and (15) to get

− 𝐴𝜌(𝛾𝑝)2 = (𝐷(𝛾𝑝)2 − 𝐹) cos(𝛾𝑝𝜏0) − 𝐸𝛾𝑝 sin(𝛾𝑝𝜏0), (16)

and

(𝛾𝑝)3 − 𝐵𝛾𝑝 = 𝐸𝛾𝑝 cos(𝛾𝑝𝜏0) + (𝐷(𝛾𝑝)2 − 𝐹) sin(𝛾𝑝𝜏0). (17)

Solving (16) and (17) simultaneously gives

𝜏0 =
1
𝛾𝑝 arccos(

𝐴(𝛾𝑝)2(𝐹 − 𝐷(𝛾𝑝)2) + ((𝛾𝑝)3 − 𝐵𝛾𝑝)𝐸𝛾𝑝
(𝐷𝛾𝑝 − 𝐹)2 + 𝐸2(𝛾𝑝)2 ) .

To verify the transversally condition, We need to prove

𝑑 𝑅𝑒 𝜆(𝜏0)
𝑑𝜏 > 0.

Squaring the two formulas (16) and (17), and adding the squares together, we obtain,

(𝛾𝑝)6 + 𝑎(𝛾𝑝)4 + 𝑏(𝛾𝑝)2 + 𝑐 = 0, (18)

Letting 𝑧0 = 𝛾2𝑝2, the formula (18) becomes as follows

ℎ(𝑧0) ∶= 𝑧30 + 𝑎𝑧20 + 𝑏𝑧0 + 𝑐 = 0. (19)

By differentiating (14) and (15) with respect to 𝜏 and then setting 𝜏 = 𝜏0, we obtain

𝐺1
𝑑𝑢(𝜏0)
𝑑𝜏 + 𝐺2

𝑑𝑣(𝜏0)
𝑑𝜏 = 𝐻1, (20)

− 𝐺2
𝑑𝑢(𝜏0)
𝑑𝜏 + 𝐺1

𝑑𝑣(𝜏0)
𝑑𝜏 = 𝐻2, (21)

where

𝐺1 = −3𝑣(𝜏0)2+𝐵+(𝐸+𝐷𝑣(𝜏0)2𝜏0 − 𝐹𝜏0) cos(𝑣(𝜏0)𝜏0)+(2𝐷𝑣(𝜏0)−𝐸𝑣(𝜏0)𝜏0) sin(𝑣(𝜏0)𝜏0),

𝐺2 = −2𝐴𝑣(𝜏0) + (−2𝐷𝑣(𝜏0) + 𝐸𝑣(𝜏0)𝜏0) cos(𝑣(𝜏0)𝜏0) + (𝐸 + 𝐷𝑣(𝜏0)2𝜏0 − 𝐹𝜏0) sin(𝑣(𝜏0)𝜏0),

𝐻1 = (−𝐷𝑣(𝜏0)3 + 𝐹𝑣(𝜏0)) sin(𝑣(𝜏0)𝜏0) − 𝐸𝑣(𝜏0)2 cos(𝑣(𝜏0)𝜏0),

𝐻2 = (−𝐷𝑣(𝜏0)3 + 𝐹𝑣(𝜏0)) cos(𝑣(𝜏0)𝜏0) + 𝐸𝑣(𝜏0)2 sin(𝑣(𝜏0)𝜏0).
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Solving for 𝑑𝑢(𝜏0)
𝑑𝜏 we get

𝑑𝑢(𝜏0)
𝑑𝜏 = 𝐺1𝐻1 − 𝐺2𝐻2

𝐺2
1 + 𝐺2

2
. (22)

Therefore, we have

𝑑𝑢(𝜏0)
𝑑𝜏 = 𝛾2𝑝2ℎ′(𝛾2𝑝2)

𝐺2
1 + 𝐺2

2
, (23)

where ℎ is a cubic function such that ℎ(𝛾2𝑝2) is given by (19).
Thus, from lemma 2, we have the transversally condition:

𝑑𝑢(𝜏0)
𝑑𝜏 > 0.

This completes the proof.

3. Numerical Simulations

In this section, we study how the dynamics of the model (1) change when the time delay
parameters vary. Let’s give the following numerical simulations:

Proposition 4. If 𝛼 = 0.5; 𝑠 = 0.5; 𝐴 = 2; 𝛿 = 0.2; 𝛾 = 0.8; 𝑝 = 0.3; 𝜌 =
0.7; 𝐿𝑒 = 1000; 𝑎𝑛𝑑 𝑔(𝐾,𝐿) = 10000. Then system (1) have the following positive
equilibrium

𝐸1 = (25000; 1000; 10000).

Furthermore, the critical delay and the period of oscillations corresponding to (1) are 𝜏0 =
0.6552 and 𝑃0 = 𝜋/𝛾𝑝.

4. Conclusion

In order to study the interaction between the population and the economic growth, we propose
a Solow-Verhulst model (1) with time delay in the recruitment of the labor force. The con-
struction of this model is based on the distribution of the population into three compartments
(employed population, unemployed population and economically inactive population) and on
the combination of the following three models:

1. the model of the evolution of the capital stock (Solow [22]);

2. the model of the evolution of the total population (Verhulst [26]);

3. the model of the evolution of the active population (Hallegatte et al. [10, 16]).

The dynamics of our model (1) are studied in terms of local stability and existence of the Hopf
bifurcation. First, we obtained the existence of an unique positive equilibrium, we analyzed its
stability and finally we have identified the necessary conditions of the existence of nontrivial
periodic solutions which bifurcate from this equilibrium.
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Figure 1: For 𝜏 = 0.6, Solution of the model (1) is locally asymptotically stable.
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Figure 2: For 𝜏 = 0.6552, the model (1) has a semi-periodic solution.

In summary, we found that:

1. The delay in the recruitment can give rise to oscillations in the active population variable.

2. The oscillations in the active population cause the economic fluctuations (oscillations in
the capital stock).

3. The total population growth is a neutral factor for the economic growth (see Figure 2).

4. The phase shift between the active population and the capital stock can lead a positive,
negative or neutral mutual interaction between economic growth and the population. This
justified the empirical results.
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Figure 3: For 𝜏 = 0.67, the model (1) is unstable.
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