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1. Introduction

In this paper, we study the integrability of the nonlinear wave equation

𝑢𝑥𝑡 = 𝑎𝑢2𝑢𝑥𝑥 + 𝑏𝑢𝑢2𝑥 (1)

containing two arbitrary parameters, 𝑎 and 𝑏, not equal zero simultaneously. Actually, there
is only one essential parameter in (1), the ratio 𝑎/𝑏 or 𝑏/𝑎, which is invariant under the scale
transformations of 𝑢, 𝑥 and 𝑡, while the values of 𝑎 and 𝑏 are not invariant. We show that this
equation (1) is integrable in two (and, most probably, only two) distinct cases, namely, when
𝑎/𝑏 = 1/2 and 𝑎/𝑏 = 1, which correspond via scale transformations of variables to the equations

𝑢𝑥𝑡 =
1
6 (𝑢

3)𝑥𝑥 (2)

and

𝑢𝑥𝑡 =
1
2𝑢 (𝑢

2)𝑥𝑥 , (3)

respectively.
There is the following reason to study the nonlinear equation (1). Recently, in [1], we studied

the integrability of the generalized short pulse equation

𝑢𝑥𝑡 = 𝑢 + 𝑎𝑢2𝑢𝑥𝑥 + 𝑏𝑢𝑢2𝑥 (4)

containing two arbitrary parameters, 𝑎 and 𝑏, not equal zero simultaneously. We showed that
there are two (and,most probably, only two) integrable cases of (4), namely, thosewith 𝑎/𝑏 = 1/2
and 𝑎/𝑏 = 1, which can be written as

𝑢𝑥𝑡 = 𝑢 + 1
6 (𝑢

3)𝑥𝑥 (5)
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and

𝑢𝑥𝑡 = 𝑢 + 1
2𝑢 (𝑢

2)𝑥𝑥 (6)

via scale transformations of variables. The nonlinear equation (5) is the celebrated short pulse
equation which appeared first in differential geometry [2, 3], was later rediscovered in nonlinear
optics [4, 5], and since then has been studied in almost any aspect of its integrability [6–17]. The
nonlinear equation (6), called the single-cycle pulse equation (due to the property of its smooth
envelope soliton solution) [1] or the modified short pulse equation [18], is a scalar reduction of
the integrable system of coupled short pulse equations of Feng [19]. One may wonder, looking
at (4), why not to generalize this equation further, as

𝑢𝑥𝑡 = 𝑎𝑢2𝑢𝑥𝑥 + 𝑏𝑢𝑢2𝑥 + 𝑐𝑢 (7)

with arbitrary parameters 𝑎, 𝑏 and 𝑐, in order to find new integrable nonlinear wave equations
in this way. It is easy to see, however, that there are only two essentially different values of the
parameter 𝑐 in (7), namely, 𝑐 = 0 and (without loss of generality) 𝑐 = 1, because one can always
make 𝑐 = 1 by a scale transformation of variables if 𝑐 ≠ 0. Since the case of (7) with 𝑐 = 1 is
the nonlinear equation (4) studied in [1], we concentrate in the present paper on the remaining
case of (7) with 𝑐 = 0, which is the nonlinear equation (1).

In Section 2 of this paper, we transform the nonlinear equation (1) with any finite value
of 𝑎/𝑏 to a corresponding (in general, nonlinear) Klein–Gordon equation whose nonlinearity
depends on 𝑎/𝑏, and we bring (1) with 𝑏 = 0 into a form suitable for the Painlevé analysis.
In Section 3, using the known results on integrability of nonlinear Klein–Gordon equations
(for 𝑏 ≠ 0) and the Painlevé test for integrability (for 𝑏 = 0), we show that the nonlinear
equation (1) is integrable if (and, most probably, only if) 𝑎/𝑏 = 1/2 or 𝑎/𝑏 = 1, that is, when
the nonlinear equation (1) is transformable to linear Klein–Gordon equations. This allows us to
obtain parametric representations for general solutions of the nonlinear equations (2) and (3)
and discuss their properties. Section 4 contains concluding remarks.

2. Transformation

In our experience, a transformation found to relate a new nonlinear equation with a known old
one is a powerful tool to derive the fact and character of integrability or non-integrability of the
new equation fromwhat is known on integrability or non-integrability of the old equation [1, 20–
23]. By means of transformations relating new equations with known old ones, it is possible
to derive analytic properties of solutions [24], expressions for special and general solutions
[1, 9, 10, 25, 26], Lax pairs, Hamiltonian structures and recursion operators [27–30] of the new
equations from the corresponding known properties and objects of the old equations.

When 𝑎 = 0 in (1), we have 𝑏 ≠ 0, and we make 𝑏 = 1 by a scale transformation of variables,
without loss of generality,

𝑢𝑥𝑡 = 𝑢𝑢2𝑥. (8)

If 𝑢𝑥 ≠ 0, we rewrite (8) as

(
1
𝑢𝑥)𝑡

+ 𝑢 = 0, (9)
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introduce the new dependent variable 𝑣(𝑥, 𝑡),

𝑣 = 1
𝑢𝑥
, (10)

and get the nonlinear Klein–Gordon equation

𝑣𝑥𝑡 = −1
𝑣. (11)

The inverse transformation from (11) to (8),

𝑢 = −𝑣𝑡, (12)

is also a local transformation, that is, like (10), it requires no integration. Note that the trans-
formations (10) and (12) between the equations (8) and (11) do not cover the case of 𝑢𝑥 = 0.
However, 𝑢 = 𝑢(𝑡) with any function 𝑢(𝑡) satisfies the nonlinear equation (1) with any values of
𝑎 and 𝑏, and this set of special solutions tells nothing about the integrability of (8).

When 𝑎 ≠ 0 in (1), we introduce the new independent variable 𝑦,

𝑥 = 𝑥(𝑦, 𝑡), 𝑢(𝑥, 𝑡) = 𝑝(𝑦, 𝑡), (13)

and impose the condition

𝑥𝑡 = −𝑎𝑝2 (14)

on the function 𝑥(𝑦, 𝑡) to considerably simplify the result. Then the studied equation (1) takes
the form

𝑥𝑦𝑝𝑦𝑡 + (2𝑎 − 𝑏)𝑝𝑝2𝑦 = 0. (15)

This equation (15) is invariant under the transformation 𝑦 ↦ 𝑌(𝑦) with any function 𝑌 , which
means that solutions of the system (14) and (15) determine solutions 𝑢(𝑥, 𝑡) of (1) parametrically,
with 𝑦 being the parameter. Next, we make use of the new dependent variable 𝑞(𝑦, 𝑡), such that

𝑥𝑦 =
1
𝑞𝑝𝑦, (16)

which means that 𝑞(𝑦, 𝑡) = 𝑢𝑥(𝑥, 𝑡). Since 𝑞 ≠ 0 in (16), our transformation does not cover the
evident special solutions of (1) with 𝑢𝑥 = 0. The compatibility condition (𝑥𝑡)𝑦 = (𝑥𝑦)𝑡 for (14)
and (16) reads

𝑝𝑦𝑡 =
1
𝑞𝑝𝑦𝑞𝑡 − 2𝑎𝑝𝑞𝑝𝑦. (17)

Eliminating 𝑥𝑦 from (15) and (16), and using (17), we get

𝑞𝑡 = 𝑏𝑝𝑞2. (18)

Due to (18), we have to consider the cases of 𝑏 ≠ 0 and 𝑏 = 0 separately.
If 𝑏 ≠ 0, we make 𝑏 = 1 by a scale transformation of variables, without loss of generality.

Using the new dependent variable 𝑟(𝑦, 𝑡),

𝑟 = 1
𝑞 , (19)
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we get

𝑝 = −𝑟𝑡 (20)

from (18), and

𝑟𝑦𝑡𝑡 =
2𝑎 − 1

𝑟 𝑟𝑡𝑟𝑦𝑡 (21)

from (17). Dividing the left- and right-hand sides of (21) by 𝑟𝑦𝑡 (𝑟𝑦𝑡 ≠ 0 if 𝑥𝑦 ≠ 0, owing to (20)
and (16)), and integrating over 𝑡, we get

𝑟𝑦𝑡 = ℎ(𝑦)𝑟2𝑎−1 (22)

with any nonzero function ℎ(𝑦), which appeared as the (exponent of) “constant” of integration.
Finally, we make ℎ(𝑦) = 1 in (22) by the transformation 𝑦 ↦ 𝑌(𝑦) with a properly chosen 𝑌(𝑦)
(thus suppressing the arbitrariness of the parameter 𝑦 down to 𝑦 ↦ 𝑦 + constant), and obtain
the following result. All solutions of the considered case of (1),

𝑢𝑥𝑡 = 𝑎𝑢2𝑢𝑥𝑥 + 𝑢𝑢2𝑥, (23)

except for solutions with 𝑢𝑥 = 0, are determined parametrically by solutions of the nonlinear
Klein–Gordon equation

𝑟𝑦𝑡 = 𝑟2𝑎−1 (24)

via the relations

𝑢(𝑥, 𝑡) = −𝑟𝑡(𝑦, 𝑡),

𝑥 = 𝑥(𝑦, 𝑡) ∶ 𝑥𝑦 = −𝑟2𝑎, 𝑥𝑡 = −𝑎𝑟2𝑡 ,
(25)

where 𝑦 serves as the parameter, and 𝑎 is an arbitrary nonzero constant.
If 𝑏 = 0, we have 𝑎 ≠ 0, and we make 𝑎 = 1 by a scale transformation of variables, without

loss of generality. In this case, we get 𝑞𝑡 = 0 from (18), that is, 𝑞 = 𝑞(𝑦) with any nonzero
function 𝑞(𝑦), and the equation (17) takes the form

𝑝𝑦𝑡 + 2𝑞(𝑦)𝑝𝑝𝑦 = 0. (26)

Consequently, all solutions of the considered case of (1),

𝑢𝑥𝑡 = 𝑢2𝑢𝑥𝑥, (27)

except for solutions with 𝑢𝑥 = 0, are determined parametrically by solutions of the nonlinear
equation (26) with any 𝑞(𝑦) ≠ 0 via the relations

𝑢(𝑥, 𝑡) = 𝑝(𝑦, 𝑡),

𝑥 = 𝑥(𝑦, 𝑡) ∶ 𝑥𝑦 =
1

𝑞(𝑦)𝑝𝑦, 𝑥𝑡 = −𝑝2,
(28)

where 𝑦 serves as the parameter. Note that the arbitrariness of 𝑞(𝑦) in (26) cannot be suppressed
by the change of parametrization 𝑦 ↦ 𝑌(𝑦).
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3. Integrability

Integrability of nonlinear Klein–Gordon equations is very well studied. It was shown in [31]
that the equation

𝑧𝜉𝜂 = 𝑤(𝑧) (29)

possesses a nontrivial group of higher symmetries if and only if the function𝑤(𝑧) satisfies either
the condition

𝑤′ = 𝛼𝑤 (30)

or the condition

𝑤″ = 𝛼𝑤 + 𝛽𝑤′, (31)

where 𝑧 = 𝑧(𝜉, 𝜂), the prime denotes the derivative with respect to 𝑧, the constant 𝛼 in (30) is
arbitrary, while the constants 𝛼 and 𝛽 in (31) must satisfy the condition

𝛽 (𝛼 − 2𝛽2) = 0. (32)

No more integrable cases of (29) have been discovered by various methods as yet.
The right-hand side of the nonlinear Klein–Gordon equation (11) satisfies neither (30) nor

(31). Therefore this equation, together with the corresponding case (8) of the studied equation
(1), must be non-integrable. The right-hand side of the nonlinear Klein–Gordon equation (24)
satisfies (30) or (31) for two values of 𝑎 only, 𝑎 = 1/2 or 𝑎 = 1, when (24) is actually a linear
equation, while the corresponding nonlinear equation (23) takes the form (2) or (3), respectively.

The case of (24) with 𝑎 = 1/2 is the Darboux integrable linear equation

𝑟𝑦𝑡 = 1 (33)

whose solutions parametrically determine all solutions (except for solutions with 𝑢𝑥 = 0) of the
nonlinear equation (2) via the relations

𝑢(𝑥, 𝑡) = −𝑟𝑡(𝑦, 𝑡),

𝑥 = 𝑥(𝑦, 𝑡) ∶ 𝑥𝑦 = −𝑟, 𝑥𝑡 = −1
2𝑟

2
𝑡 ,

(34)

where 𝑦 serves as the parameter. Taking the general solution of (33)

𝑟 = 𝑦𝑡 + 𝑓(𝑦) + 𝑔(𝑡), (35)

where 𝑓(𝑦) and 𝑔(𝑡) are arbitrary functions, we obtain via (34) the following parametric repre-
sentation for the general solution of the nonlinear equation (2):

𝑢(𝑥, 𝑡) = −𝑦 − 𝑔′(𝑡),

𝑥 = −1
2𝑦

2𝑡 −∫𝑓(𝑦) 𝑑𝑦 − 𝑦𝑔(𝑡) − 1
2 ∫[𝑔′(𝑡)]2 𝑑𝑡,

(36)

where the prime stands for the derivative. It follows from (36) that

𝑢𝑥 =
1

𝑦𝑡 + 𝑓(𝑦) + 𝑔(𝑡) , (37)
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which shows that the general solution (36) does not cover the evident special solutions of (2)
with 𝑢𝑥 = 0. Also, due to (37), there are apparently no solutions of (2) without singularities of
the type 𝑢𝑥 → ∞, besides the solutions with 𝑢𝑥 = 0. We do not see how to choose the functions
𝑓(𝑦) and 𝑔(𝑡) to make the denominator in (37) not equal zero for all values of 𝑦 and 𝑡.

The case of (24) with 𝑎 = 1 is the Fourier integrable linear equation

𝑟𝑦𝑡 = 𝑟 (38)

whose solutions parametrically determine all solutions (except for solutions with 𝑢𝑥 = 0) of the
nonlinear equation (3) via the relations

𝑢(𝑥, 𝑡) = −𝑟𝑡(𝑦, 𝑡),

𝑥 = 𝑥(𝑦, 𝑡) ∶ 𝑥𝑦 = −𝑟2, 𝑥𝑡 = −𝑟2𝑡 ,
(39)

where 𝑦 serves as the parameter. Since

𝑢𝑥 =
1
𝑟 (40)

due to (39), the parametric representation (39) of the general solution of (3) does not cover the
evident special solutions of (3) with 𝑢𝑥 = 0. It is easy to see from (40) that a solution 𝑢(𝑥, 𝑡)
of (3) contains singularities of the type 𝑢𝑥 → ∞ if the corresponding solution 𝑟(𝑦, 𝑡) of (38)
contains zeroes. For example, if we take

𝑟 = sin(𝑦 − 𝑡), (41)

we get from (39) the solution

𝑢 = cos(𝑦 − 𝑡), 𝑥 = −1
2(𝑦 + 𝑡) + 1

4 sin 2(𝑦 − 𝑡) (42)

containing singularities, as shown in Figure 1.
On the contrary, taking

𝑟 = cosh(𝑦 + 𝑡), (43)

we get the smooth solution

𝑢 = − sinh(𝑦 + 𝑡), 𝑥 = −1
2(𝑦 − 𝑡) − 1

4 sinh 2(𝑦 + 𝑡), (44)

shown in Figure 2.
Note that, in (42) and (44), the constant of integration in 𝑥 has been fixed so that 𝑥|𝑦=𝑡=0 = 0.
It only remains to test the integrability of the nonlinear equation (27), because the case

of (1) with 𝑏 = 0 could not be transformed into a Klein–Gordon equation. We have found
the transformation (28) which relates (27) with the nonlinear equation (26). Let us study the
integrability of (26) by means of the Painlevé analysis [32–34], which is, in our experience,
a reliable and easy-to-use tool to test the integrability of nonlinear equations [35–50]. The
reliability of the Painlevé test for integrability has been empirically verified in numerous studies
of multi-parameter families of nonlinear equations, including the fifth-order KdV-type equation
[51], the coupled KdV equations [52–56], the symmetrically coupled higher-order nonlinear
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Figure 1: The singular solution (42): 𝑡 = 0 (solid) and 𝑡 = 1 (dashed).

Schrödinger equations [57–59], the generalized Ito system [60], the sixth-order bidirectional
wave equation [61], and the seventh-order KdV-type equation [62].

A hypersurface 𝜙(𝑦, 𝑡) = 0 is non-characteristic for the studied equation (26) if 𝜙𝑦𝜙𝑡 ≠ 0,
and we choose 𝜙𝑡 = 1 without loss of generality, that is, 𝜙 = 𝑡 + 𝜓(𝑦) with 𝜓𝑦 ≠ 0. Using the
expansion

𝑝 = 𝑝0(𝑦)𝜙𝛾 +⋯+ 𝑝𝑛(𝑦)𝜙𝛾+𝑛 +⋯ , (45)

we find the dominant singular behavior of solutions of (26) near 𝜙 = 0,

𝛾 = −1, 𝑝0 =
1

𝑞(𝑦) , (46)

together with the corresponding positions of resonances,

𝑛 = −1, 2, (47)

where 𝑛 = −1 refers to the arbitrariness of 𝜓(𝑦). Substituting the expansion

𝑝 = 𝑝0(𝑦)𝜙−1 + 𝑝1(𝑦) + 𝑝2(𝑦)𝜙 +⋯ (48)

to (26), and collecting terms with equal degrees of 𝜙, we get the following. The terms with 𝜙−3,
of course, give the expression (46) for 𝑝0. The terms with 𝜙−2 give the expression

𝑝1 =
−𝑞𝑦
2𝑞2𝜓𝑦

. (49)

The terms with 𝜙−1, however, do not determine 𝑝2(𝑦) (here we have the resonance) but lead to
the nontrivial compatibility condition

𝑞𝑞𝑦𝜓𝑦𝑦 − 𝑞𝑞𝑦𝑦𝜓𝑦 + 3𝑞2𝑦𝜓𝑦 = 0. (50)
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Figure 2: The smooth solution (44): 𝑡 = 0 (solid) and 𝑡 = 1 (dashed).

In order to satisfy this condition (50) for all functions 𝜓(𝑦) (𝜓𝑦 ≠ 0), we must set 𝑞𝑦 = 0.
Otherwise, for 𝑞𝑦 ≠ 0, the compatibility condition (50) is not satisfied identically, and we
must introduce logarithmic terms to the expansion (48), starting from the term proportional to
𝜙 log𝜙, which is a clear indication of non-integrability. Consequently, the nonlinear equation
(26) is integrable for 𝑞 = constant only, not for any nonzero function 𝑞(𝑦). Therefore the
corresponding equation (27) is not integrable. Moreover, since 𝑞(𝑦, 𝑡) = 𝑢𝑥(𝑥, 𝑡), we believe
that the only solutions of the nonlinear equation (27) obtainable in a closed form are the evident
solutions with 𝑢𝑥 = constant.

4. Conclusion

In this paper, we have generalized further the generalized short pulse equation studied recently
in [1], and found in this way two new integrable nonlinear wave equations, namely, (2) and (3),
which are transformable to linear Klein–Gordon equations. These new equations (2) and (3),
due to the absence of the linear term “𝑢” in them, can be considered as “massless” counterparts
of the short pulse equation (5) and the single-cycle pulse equation (6), respectively. Let us note,
however, that the types of integrability of (2) and (3) are essentially different from the type
of integrability of (5) and (6). While the equations (5) and (6) are two “avatars” (in the sense
of transformations) of the sine-Gordon equation, the new nonlinear equation (2) is an “avatar”
of a Darboux integrable linear Klein–Gordon equation, and the new nonlinear equation (3) is
an “avatar” of a Fourier integrable linear Klein–Gordon equation. Taking this into account,
we expect that the integrability properties of the new equation (2) are similar to those of the
Liouville equation (continual sets of generalized symmetries and conservation laws, and several
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mutually non-equivalent Lax pairs [63]), whereas the properties of (3) may be similar to those
of linear wave equations (a discrete hierarchy of symmetries, a finite set of conservation laws,
and no phase shifts in wave interactions). We believe that these new equations (2) and (3) can
be useful, as integrable scalar reductions, for classifications of integrable vector short pulse
equations.

Let us also note that our equations (2) and (3) did not appear in the most recent integrability
classification of generalized short pulse equations of Hone, Novikov and Wang [64] because
equations without the linear term “𝑢” were not studied there.
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