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Abstract. In this paper, we are concerned with finding approximate solutions to local fractional
Poisson equation by using the reduced differential transform method (RDTM) and homotopy
perturbation transform method (HPTM). The presented methods are considered in the local
fractional operator sense. Illustrative examples for handling the local fractional Poisson equation
are given. The obtained results are given to show the sample and efficient features of the
presented techniques to implement partial differential equations with local fractional derivative
operators.
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1. Introduction

The Poisson equation plays an important role in mathematical physics [1, 2]; that is, it describes
the electrodynamics and intersecting interface [3, 4]. We notice that recently local fractional
Poisson equation was analyzed in [5]. Recently, the Poisson equation (PE) with local fractional
derivative operators (LFDOs) was presented in [6] as follows:

azac;fz; ¥) aZa;)E;; ) = fx.y). O<a<l (1.1)
subject to the initial and boundary conditions
u(x,0)=0, u(x,)=0,
" (1.2)
uw©,y) = @), ——Zu0.y) = d(y),

where u(x, y) is an unknown function, @(y) and ¢(y) are given functions, and the local fractional
derivative operators (LFDOs) of u(x) of order a at x = x, are given by

A% (u(x) — u(x))
(x — x¢)*
where A%(u(x) — u(xy)) = I'(a + 1) (u(x) — u(xy)).

In recent years, a many of approximate and analytical methods have been utilized to solve

: (1.3)

u®(xg) = lim

X—?XO

the ordinary and partial differential equations with local fractional derivative operators such as
local fractional Adomian decomposition method [7-11], local fractional variational iteration
method [6, 7, 12-15], local fractional function decomposition method [8, 16], local fractional
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series expansion method [11, 17], local fractional Laplace decomposition method [18, 19], local
fractional Laplace variational iteration method [20-23], local fractional homotopy perturbation
method [24], local fractional reduce differential transform method [24], local fractional differ-
ential transform method [26, 27], and local fractional Laplace transform method [28]. Our main
purpose of the paper is to utilize the local fractional RDTM and local fractional HPTM to solve
the PE with LFDOs.

2. Analysis of the Methods

Let us consider the following partial differential equation with local fractional derivative oper-
ators:

L,ou(x,y)+ Ru(x,y)= f(x,y), 0<a<l, 2.1

na

9
where L, = —

e R, is a linear local fractional operator, and f(x, y) is the source term.

l. Local Fractional HPTM

The local fractional homotopy perturbation method has been developed and applied to solve a
class of local fractional partial differential equations by Yang et al. in 2015 [25]. Based on it,
we suggest a new analytical method.

Applying the Yang-Laplace transform on both sides of (2.1), we get

L, {Lutx,y)} +E£, {Ryu(x,y)} =L, {f(x,9)]}. 2.2)

Using the property of the Yang-Laplace transform, we have

$" Ly {u(x, y)} = s"HU(0, y) = sUPHUO(0, ) = o = u 7DD, y)
(2.3)
=L, ([, 1)} = L, {Rau(x.1)},
or
1 l (@ 1 (-Da
Lo (uCe Y = —Zu0,9) + w0, 3) + -+ —2u 700, y)
2.4)
1 1
ko SO0} = oLy {RuuCx )}
Operating with the Yang-Laplace inverse on both sides of (2.4) gives
a1
u(x,3) = Gx, ) = L7 (o, { Rt )} ). 2.5

where G(x, y) represents the term arising from the source term and the prescribed initial condi-
tions. Now we apply the local fractional homotopy perturbation method:

u(x, ) = Y P U, (x, ), (2.6)
n=0

where p € [0, 1] is an embedding parameter.
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Now, we substitute (2.6) in (2.5):

D P u(x, ) = G(x, ) — p° [L;l‘ (%Lu { R, ) P u,(x,y) } )] . Q@7
S

n=0 n=0

which is the coupling of the local fractional Laplace transform and homotopy perturbation
method. Comparing the coefficients of like powers of p*, the following approximations are

obtained:
P up(x,y) = G(x, y),

plo: u(x,t) = —L;l {S%L“ {Rauo(x, y)}} )
(2.8)

_ 1
P uy(x,t) = — L7 {SWL“ {Ru(x, y)}} ;

Proceeding in this same manner, the rest of the components u,(x, y) can be completely obtained
and the series solution is thus entirely determined. Finally, we approximate the analytical solu-
tion u(x, y) by truncated series:

N
u(x,y) = lim 3" u,(x.y). 29)
n=0

Il. Local Fractional RDTM.

In the following the basic definitions and fundamental operations of the local fractional reduce
differential transform method are shown [25].

Definition 1. If u(x, y) is a local fractional analytical function in the domain of interest, then the
local fractional spectrum function

1 Ok“u(x, y)
I'(1+ka) | oxke ’

X=X

U,() = (2.10)

is reduce differential transformed of the function u(x, y) via local fractional operator, where
k=0,1,2,...,nand 0 < a < 1.

Definition 2. The inverse reduced differential transform of U, (y) via local fractional operator is

defined as:
u(x,y) = Y U)x = x0)* @.11)
k=0
From (2.1) and (2.2) we have
- (x — xo)ka *u(x, y)
= . 2.12
ux.9)= T(I + ka) | oxke 12

k=0 X=X
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From (2.12), it is obvious that the local fractional reduce differential transform is derived from
the local fractional Taylor theorems.

Whenever x, = 0, then (2.10) and (2.11) become

1 0"“u(x, y)
Lh(y)_-fll4-ka)[ Ok ]X_O’ (@-13)
u(x, )= Y U(y)x. (2.14)
k=0

By using (2.10) and (2.11), the theorems of the local fractional transform method are deduced
as follows:

Theorem 1. [f w(x, y) = u(x, y) + v(x, y), then
Q) =U+V». (2.15)

Theorem 2. [f w(x,y) = au(x, y), then

Q) =alU(y). (2.16)

Theorem 3. If w(x, y) = u(x, y)v(x, y), then

k
Q) = Y U0 Vi () 2.17)
1=0

9"
oxne

Theorem 4. Ifw(x,y) = u(x, y), then

_ '+ (k+na)

Q U ) 2.18
)= =i Ve (2.18)
Theorem 5. If w(x,y) = ﬁr(%}m then
s (k —m)
Q) = — ‘ (2.19)

I'(l +na) T + ma)

Theorem 6. If w(x,y) = %, then

0" U, (y)
Q) = — 5 (2.20)
According to the local fractional RDTM, we can construct the following iteration for the
equation (2.1) as:

r'a+&+na)

(1 + ka) Upn(9) + R, [Uk(y)] = F.(»), (2.21)

where U, (y) and F, (y) are reduce differential transformed with local fractional operators of the
functions u(x, y) and f(x, y) respectively.
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3. Two lllustrative Examples

In this section we investigate the approximate solutions for the local fractional Poisson equations

with different initial-boundary conditions.

Example 1. Let us consider the Poisson equation with LFDOs:

u(x,y)  0ux,y) _ 3.1
0x2« oy« Ird+a)’ '

subject to the initial and boundary conditions

u(x,0)=0, ulx,H=0

3a

_ y
u0,y) = 1130 (3.2)

a

u(0, y) = sin, (»").

ox¢

02 x
0 0

Figure 1: Plot of the approximate solution of (3.1) with the parameter & = In2/1In 3.

I. Below we present the local fractional HPTM.

Applying the Yang-Laplace transform on both sides of (3.1), subject to the initial conditions
(3.2), we have

1y 1. 1Ly 1 0> u(x, )
i) = Rt T O R {T - 63
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The inverse Yang-Laplace transform implies that

3a a 2a a 2a
y x o x y a1 0~ u(x, y)
)= L L .
U= R 50 TTa e Y T T T v e <s2“ { dy2a
(3.4)

Now applying the LFHPM, we get
3a a 2a a

Y + =2 sin (%) + —=> Y
T1+3a0) Td+a) T Tad+20T0 +a)

1 — % u (x,y)
a 7-—1 na n
—D La <S$£a { r;) p ayza .

Comparing the coefficients of like powers of p*, we have

Yo P U, (x,y) =

3.5

y30! X ) . x2a ya
+ sin, (") + ,
I'l+3a) TI'A+a) I'a+2a)I'(1 + a)

- IL 0% u(x, y)
T STO‘ a ayza

2a a 3a

_ X y + X
T +2a)T(1+a)  I(1+3a)

020‘ , Sa
e %LQ u1(2x y) __ X sin, (4,
s 0y*® I'(l + 5a)

P* u(x,y) =

la

P iu(x,y)

sin, (%),

pza : u2(x7 y)

Therefore, the series solution the equation (3.1) when p — 1 will be as

3a

a 3a Sa
ux,y) = A + sin (y® ad + = + 4+ oo
(1 +3a) @ T(l+a) T(+3a I(+5a)

(3.6)
y3a
= M3 + sin, (y* sinh, (x®).

II. As a next step we apply the local fractional RDTM.

To obtain solution of equation (3.1) using the local fractional RDTM, in view of equations (2.18)
and (2.20), we can transform equation (3.1) to the following iteration

T+ (k+2)a) U, (y) "
T Ttk T o TR (-7)
or
T +ka) " 0> U (y)
Uisa) = (1 + (k+2)a) (F(l +a)5“(k)_ W)' 38
From the initial conditions (3.2), we obtain
i 1 .
Uy(») = m, U= m sin, (¥). (3.9)
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Now, substituting (3.9) into (3.8), we have the following U, (y) values successively:

— 1 y 0**Uy(y)
Y0 = Five <r<1+a)5a(°)‘ayT>
_ (Y N\,
'l+a T+ ’
T+ » 0*"U,(y)
GO) = I'(1+3a) (r(1+a)5a(1)_v>
_ T(+a) .
= T +3a) <O+ T+ e )>
_ 1 .
= T 430 "M
_ T +2w y* _ 0% U, (y)
Vi) = F0 5 2a) (F(1+a)5“(2) EET )
= 0,
_ Ta+30) (" 9**Us(y)
Us) = Fi¥se) <F(1+a)5“(3)_ oy >
_ (1 +3a) 1 sin (%)
T Td+5a T+ 3a) e
1 .
= T +50) sin, (%),
and so on.
Hence, the solution of (3.1) gives
u(x,y) = Yoo Up(y) x*
oy +sin, (v [ ——— + SN S
Td+30 Y \Fi 7w "TA+3a T4+ 50 (3.10)
3a
y

= m + Sina(ya) Sinha(xa).

From equations (3.6) and (3.10), approximate solution of the given problem equation (3.1) by
using local fractional HPTM is the same results as that obtained by the local fractional RDTM
and the local fractional variational iteration method [6].

Example 2. Consider the following Poisson equation with LFDOs:

0% u(x,y)  0*u(x,y)
ax2a ay2a

= E,(y), (3.11)
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subject to the initial and boundary conditions

ux,0)=0, ulx,)=0

u(0,y) = E, (), (3.12)

aa
ox“

u(0, y) = cos,(»%).

u(x, y)

02

0 0

Figure 2: Plot of the nondifferentiable solution of (3.11) with the parameter & = In2/1n 3.

Applying the Yang-Laplace transform on both sides of (3.11), we have

1 w1 w1 w1 0™ u(x,
L, {ulx,y)} = S—aEa(y )+ o cos, (") + ﬁEa(y ) — STaLa {%} ) (3.13)

The inverse Yang-Laplace transform implies that

x“ X% -1 1 aZau(x’ y)
,9)=E (%) + N+ ———FE () - L —L,  —
u(x,y) = E,(y%) I+ cos,(y*) T+ 20) 5 - £ <s2“ a{ 2y%%
(3.14)
Now applying the LFHPM, we get
o £ x% x2a E
na s - (s + (e + (14
oo P U, (X, Y) (%) T cos, () ) (%)
(3.15)

1 — 0*u (x,y)
_ aL—l — L no n .
Ll (S2a a { nZO p ayZa
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Comparing the coefficients of like powers of p*, we have

P ) = )+ s cos, () + %Ea(w)
pla Sy (x,y) = _£;1 <S%La { a2agoy(2):, y) })
= _%Ea(ya) + % cos,(y*) — %Ea(ya)
P ru(x,y) = -4, (;Eﬂﬂa {—azagly(zj’y) }>
T 1xia4a) B0+ & 1x-5:5a) cosa(y) + F(lxia6a) E")
Therefore, the series solution the equation (3.10) when p — 1 will be as
X 3 5
. y) = B+ cos, " <r(1 To T +3a ' T(+50) ) 3.16)

E, () + cosa(y") sinh, (x%).

(I) By using local fractional RDTM.

Taking the local fractional RDTM of (3.11), by using the basic operation in theorems, yields

(1 + (k+2a) U,
wUk+2(y) + Topa E,(y*)6,(k), (3.17)
or
T+ ka) . O**Uy(y)
U (y) = T+ (k+29) <Ea(y )6,(k) — ?> . (3.18)
From the initial condition (3.2), we obtain
Uy = E,0", U= cos, (). (3.19)

I'd+a
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Now, substituting (3.19) into (3.18), we have the following U, (y) values successively

_ 1 " 0% Uy(y)
U,(y) = Td+20) <Ea(y )6,(0) — W)

(E.0" = E,(0) =0,

a 2a
Uy = L4+ < Y sl Ul(y)>

T(1+3a) \I'(0+a) * 0y2®
I'(l + a) 1 .
= 0 *
F(l+3a)( TR e )>
= — 1 Gin®
T T 43 @V
rd + 2« o 0™ U,(y)
Uy = sa 20 (Y 50y 2 220
(1 +4a) \I'(1 +a) 0y2e
= 0,
r'd + 3a) " 0 Us(y)
Us(y) = 5,(3) — —==-
O = T (1450 <r(1 N T
I'(1 + 3a) .
= sin, (»%)
I (1+5a) (1 + 3a)
= ;sin 0]
T T +50) eV
and so on.
Hence, the solution of (3.11) gives
u(x,y) = Y Uy)x*
k=0
3a a 3a Sa
- _ Y isino® x X x (3.20)
[+ 3q) TSl (F(l Yo " Ta+3z ' Ta+5a )
y3a

= i3 + sin, (y® sinh, (x%).

From equations (3.16), (3.20) and (3.10), approximate solution of the given problem equation
(3.11) by using local fractional HPTM is the same results as that obtained by the local fractional
RDTM and the local fractional variational iteration method [6].

4. Conclusions

In this work, the reduced differential transform method (RDTM) and homotopy perturbation
transform method (HPTM), have been successfully applied for the Poisson equation within
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local fractional derivative operators. It can be concluded that, RDTM is a very powerful and
efficient technique for finding approximate solutions for wide classes of problems and can be
applied to many complicated linear and non-linear problems, and does not require linearization,
discretization or perturbation. There are two important points to make here. First, the local
fractional RDTM and the local fractional HPTM provide the solutions in terms of convergent
series with easily computable components. Second, it seems that the approximate solution in
examples using RDTM converges faster than the approximate solution using HPTM. Our goal
in the future is to apply the RDTM to nonlinear PDEs that arises in mathematical physics.
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