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Abstract. Iodinated radiographic contrast agents (IRCA) are pharmaceuticals commonly used for improving the visibility of
internal organs and structures in X-ray based imaging techniques such as radiography, angiography and contrast-enhanced
computed tomography scans, and for performing cardiac catheterizations and percutaneous coronary interventions. Like all other
pharmaceuticals, however, these agents are not completely devoid of risk. The main risk is their nephrotoxicity. Following the
description of Contrast-Induced Nephropathy (CIN) and its pathogenesis, the conditions favoring the development of CIN are
discussed in depth. The main predisposing condition is a pre-existing renal impairment, particularly when associated with diabetes
mellitus. Then, measures to prevent CIN are suggested. The important rules in CIN prevention are: monitoring renal function,
discontinuation of potentially nephrotoxic drugs, use of either iodixanol or iopamidol at the lowest dosage possible. Above all,
the main procedure for prevention of CIN is an adequate hydration of the patient with either isotonic sodium chloride or sodium
bicarbonate solutions.

Keywords: Iodinated radiographic contrast agents; Contrast-Induced Nephropathy; Contrast-Induced Acute Kidney Injury; Acute
Renal Failure; Radiographic contrast media; Nephrotoxicity; Cell injury; Renal tubular injury

1. Introduction

Iodinated radiographic contrast agents (IRCA) are phar-
maceuticals commonly used for improving the visibility
of internal organs and structures in X-ray based imaging
techniques such as radiography, angiography and contrast-
enhanced computed tomography (CT) scans, and for per-
forming cardiac catheterizations and percutaneous coronary
interventions. IRCA are required for a large number of X-

ray and CT studies to enhance vessels and organs dependent
on the blood supply. After intravascular injection, they are
diluted in the bloodstream and rapidly distributed throughout
the extracellular fluid. The main route of excretion is
through the kidneys, related to the poor binding of the
agent to serum albumin. Like all other pharmaceuticals,
however, these agents are not completely devoid of risk,
the main one being nephrotoxicity, as we will describe
later.
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2. X-ray Based Imaging Techniques for
Diagnostics and Intervention

Excretory Urography, also known as intravenous pyelogram,
is an X-ray based examination in which anatomic and
physiologic abnormalities of the kidneys, renal pelvis, ureters
and bladder are detected by obtaining a timed series of
images of the abdomen and pelvis after the injection of
intravenous (i.v.) iodinated contrast media. It is performed
using conventional X-ray. The minimum concentration of
contrast medium in the glomerular filtrate necessary to
produce an appreciable nephrogram is probably in the region
of 70 mg iodine per cent [1]. This technique is still used for
pediatric patients and for young adult patients. It has been
largely supplanted by cross-sectional imaging techniques,
particularly CT urography (CTU), in adults. The remaining
major indication for urography is hematuria. Patients with
hematuria require evaluation of both the renal parenchyma
and the urothelium. But urography is less sensitive than
CT in detecting renal masses and does not allow reliable
differentiation of solid masses from cysts.

With the recent introduction of multi–detector row helical
CT, the uroradiologic evaluation of patients with common
and complex diseases is, in fact, changing rapidly. In Contrast
Enhanced Computed Tomography (CECT) examinations,
contrast agents are used to highlight specific tissues and parts
of the body. Sufficient contrast is important in perceiving a
difference in the density between areas of a CT image.

Application of multi–detector row CT to evaluate the
urinary tract (termed CT urography) allows the evalua-
tion of the renal parenchyma and urothelium. It uses CT
images after i.v. injection of iodinated contrast material to
obtain images of the urinary tract, to evaluate patients with
hematuria, to evaluate patients with acute renal colic, to
detect renal/ureteral stones, to follow patients with prior
history of cancers of the kidneys or of the urinary tract, to
identify abnormalities of the urinary tract either congenital
or in patients with recurrent urinary infections, to assess the
integrity of the urinary tract following trauma or therapeutic
interventions. It can provide valuable information about other
abdominal and pelvic structures and diseases that may affect
them. The dose of contrast medium instilled will vary with
factors, such as the patient’s body weight and presence of
both kidneys versus a solitary kidney (whether functionally
or anatomically solitary).

An i.v. injection of an IRCA improves the visualization
of organs like the liver, spleen, pancreas and kidneys and
provides information about the blood supply. High resolution
CT scans with thin slices and i.v. injection of IRCA provide
detailed images of vascular anatomy and the adjacent bony
structures.

Contrast agents are used in CT angiography [2] to
delineate vessels and to provide dynamic information of
blood supply. Common angiography allows visualization
of the coronary arteries (Coronary Angiography), of the

arteries of the lung (Pulmonary Angiography), the brain
(Cerebral Angiography), the neck (Carotid Angiography),
the legs or arms (Peripheral Angiography), and of the aorta
(Aortography).

Traditional coronary angiography is an X-ray with radio-
opaque contrast injected in the coronary arteries that shows
the coronary circulation. For doing this, a catheter is inserted
into the radial artery or into the inguinal femoral artery up
through the blood vessel until it reaches the coronary artery;
X-ray imaging is used to guide the catheter up to the coronary
artery.

A Computed Tomographic Angiography [2] or computer-
ized tomography angiogram is a diagnostic imaging test that
combines conventional CT technique with that of traditional
angiography to create images of the blood vessels in the body.

Coronary CT angiography (CCTA) is a noninvasive
alternative to conventional invasive coronary angiography
for detecting coronary artery stenoses and plaques. Unlike
a traditional coronary angiogram, CT coronary angiography
does not use a catheter inserted in the peripheral vessels up
to the heart. In fact, it relies on a powerful X-ray machine
to produce images of the heart and heart vessels. Since the
IRCA is injected into a vein in the arm rather than into a
coronary artery, as in traditional angiography, without using
a catheter, CT angiography is considered noninvasive. One
of the major concerns with CCTA is the amount of IRCA
injected [3]. The amount of IRCA has generally been decided
based on body weight, body mass index, or body surface area
[4, 5].

Percutaneous coronary intervention (PCI), usually called
coronary angioplasty or percutaneous transluminal coronary
angioplasty (PTCA), is a non-surgical procedure used to
treat the stenotic coronary arteries in coronary heart disease.
During PCI, using a guidewire, the cardiologist feeds a
deflated balloon on a catheter; the catheter is inserted into
the radial artery or into the inguinal femoral artery up
through the blood vessel until it reaches the coronary artery;
X-ray imaging is used to guide the catheter up to the
stenotic coronary artery. The balloon is then inflated to dilate
the stenotic artery by compressing the fatty tissue on the
artery wall, thereby allowing blood to flow. Coronary stents
are today usually utilized in PCI procedures; it is a tiny,
expandable metal coil that is inserted into the newly-opened
section of the coronary artery to keep the stenotic artery
permanently open.

3. The Iodinated Radiographic Contrast
Agents (IRCA)

The X-ray IRCA are based on the tri-iodinated benzene
ring. Iodine is an important element used in contrast media,
possessing high-contrast density.

IRCA have different osmolalities (Table 1). The ionic
High-Osmolar Contrast Media (HOCM, e.g., diatrizoate)
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have an osmolality ranging between 1500 and 1800
mOsm/kg; thus, they have 5 to 8 times the osmolality of
plasma. Nonionic Low-Osmolar Contrast Media (LOCM,
e.g., iohexol) have an osmolality ranging between 600 and
850 mOsm/kg and therefore 2–3 times the osmolality of
plasma. Finally, the nonionic Iso-Osmolar Contrast Media
(IOCM, e.g., iodixanol) have an osmolality of about 290-
300 mOsm/kg; they have therefore the same osmolality as
plasma [6-8]. This decreasing osmolality in the development
of IRCA reflects the attempts to reduce IRCA nephrotoxicity.

At equal iodine concentrations (300mg I/mL), the HOCM
ioxithalamate has been shown to have stronger cytotoxic
effects on proximal tubular cells in vitro than LOCM or
IOCM [9]. The same is true for other HOCM. In order to
reduce the incidence of severe nephrotoxicity in patients with
pre-existing renal failure, LOCM is preferred to HOCM or
IOCM [10-13]. At equal iodine concentrations it has been
demonstrated that there is no difference in the cytotoxicity
of the LOCM iomeprol and IOCM iodixanol on renal
proximal tubular cells in vitro [14]. Recent studies of meta-
analyses have demonstrated no difference in the incidence
of nephrotoxicity between IOCM and LOCM [14-17] with
the exception of the LOCM iohexol that is more nephrotoxic
[10, 18].

The different IRCA also have different viscosities (Table
1). The lower the osmolality, the higher is the viscosity; at
comparable iodine concentrations and x-ray attenuation, the
nonionic dimeric IOCM have about twice the viscosity of the
nonionic monomeric LOCM [19–21].

4. Contrast-Induced Nephropathy (CIN)

The most important and unwanted side effect of IRCA is
their nephrotoxicity that is referred to as Contrast-Induced
Nephropathy (CIN) or Contrast-Induced Acute Kidney
Injury (CI-AKI), an Acute Renal Failure (ARF) that occurs
between 24 and 72 hours after the radiographic procedure
using IRCA that cannot be attributed to other causes [22, 23].
Usually it is a nonoliguric ARF with asymptomatic transient
decrease of renal function as mirrored by the increase in
serum creatinine (SCr) of at least 0.5 mg/dl or by 25% from
baseline. The maximum value of SCr is reached on the
third to the fifth day, then returning to baseline within 10
to 14 days. The basal value of renal function, i.e., before
the IRCA injection, may be obtained with the calculation
of the so-called estimated glomerular filtration rate (eGFR),
i.e., the creatinine clearance (CrCl) obtained using the
MDRD (Modification of Diet in Renal Disease) formula [24]
or the CKD-EPI (Chronic Kidney Disease Epidemiology
Collaboration) equation [25], or the very simple Cockcroft-
Gault formula [26].

As underlined by Bragadottir et al. [27], undoubtedly
SCr is not an adequate marker of renal function, because of

fluctuations in creatinine production from muscle creatine.
SCr is affected by age, gender, race and weight which
affect muscle mass. Thus, daily changes in SCr poorly
reflect changes in kidney function in patients with ARF. The
measured CrCl method requires a steady state condition that
is not always met in critically ill patients, in whom changes
in the hemodynamics may result in dramatic changes in renal
function over a 24-hour urine collection period; furthermore,
timed collection of urine is cumbersome and not accurate.
The three equations suggested include corrections by age,
sex, and race and body weight, thereby overcoming some
of the limitations associated with using serum creatinine
alone. These equations are also not ideal in critically ill
patients with ARF. But Robert et al. [28] have compared
the Cockcroft and Gault formula with inulin clearance in 20
critically ill patients and found a good correlation between
inulin clearance and the formula, using the ideal body weight
in their calculation. Anyhow, the eGFR obtained before
IRCA injection is calculated using the SCr in patients who
are usually in a stable condition. The patient may become
critically ill only if CIN occurs. Unfortunately, sometimes the
patients are in an unstable condition, being critically ill even
before CIN.

In some cases, CIN may cause a severe impairment
of renal function with oliguria (<400 mL/24 hours), that
requires dialysis; for this type of ARF the mortality is high.

The clinical feature and the management of CIN are
the same as that for ARF due to other causes [29–32]. In
hospitalized patients who exhibit normal renal function prior
to the injection of IRCA the incidence of CIN seems to be
approximately 5% [33]; it is about 2% [34] or even 1% in
outpatients with eGFR >45 ml/min per 1.73 m2 [35].

CIN is uncommon in patients with normal pre-existing
renal function. It is more frequent in patients with reduced
basal renal function, especially when associated with dia-
betes mellitus [36]. Among all procedures utilizing IRCA for
either diagnostic or therapeutic purposes, coronary angiogra-
phy and percutaneous coronary interventions are associated
with the highest rates of CIN [37]. This occurs for three
reasons. Firstly, because of intra-arterial injection of IRCA.
The IRCA, in fact, seem to be more nephrotoxic when given
intra-arterially because of the higher acute concentration
they reach in the kidneys [38, 39], especially if the arterial
injection is suprarenal [40–46]. Secondly, because of the
high dosage of the IRCA used for these procedures. Thirdly,
because of the type of patients undergoing these procedures,
who are usually in advanced age, with one or more comorbid
conditions, such as advanced vascular disease, severe long-
standing hypertension, diabetes and some renal function
impairment [47]. Sometimes, in fact, the patients with coro-
nary artery disease already have an initial renal dysfunction
due to advanced age [48].

Bruce et al. [49] have observed that the incidence of CIN
in the iohexol group of patients undergoing CT was similar
to that of the control group (without iohexol) up to a basal
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Table 1: Iodinated Contrast Media Used in Clinical Practice.

Name Type Iodine content
mg/mL

OSM mOsm/kg Osmolality type Viscosity cps at
37∘C

Ionic
Diatrizoate (Hypaque 50, Renografin) Monomer 300 1,550 HOCM 10.5
Metrizoate (Isopaque 370) Monomer 370 2,100 HOCM 3.4
Iothalamate (Conray) Monomer 325 1,843 HOCM 4.0
Ioxaglate (Hexabrix) Dimer 320 580 LOCM 7.5
Nonionic
Iopamidol (Isovue-370) Monomer 370 796 LOCM 9.4
Iohexol (Omnipaque 350) Monomer 350 884 LOCM 10.4
Iodixanol (Visipaque 320) Dimer 320 290 IOCM 11.8
Iotrolan (Isovist) Dimer 300 320 IOCM 8.1
Ioxaglate (Hexabrix) Dimer 320 600 LOCM 7.5
Ioxilan (Oxilan 350) Monomer 350 695 LOCM 8.1
Iopromide (Ultravist 370) Monomer 370 774 LOCM 10.0
Ioversol (Optiray 300) Monomer 300 651 LOCM 5,5
Iomeprol (Iomeron 350) Monomer 350 618 LOCM 7.5
Ionic and nonionic contrast media may be monomeric or dimeric; 3 iodine atoms are delivered with each benzene ring of a contrast
medium: if a contrast molecule contains only 1 benzene ring, it is called a Monomer, if it contains 2 benzene rings, it is called a Dimer. In
a solution, ionic contrast media break up into their anion and cation components, thereby increasing osmolality; while nonionic contrast
media do not break up in solution. Nonionic dimers are the ideal contrast media as they deliver the most iodine with the least effect on
osmolality.
The osmolality of contrast media is compared with the osmolality of plasma. HOCM = High-Osmolar Contrast Media have the highest
osmolality, i.e., 5–8 times the osmolality of plasma. LOCM = Low-Osmolar Contrast Media have an osmolality still higher than plasma,
i.e., 2–3 times the osmolality of plasma. IOCM = Iso-Osmolar Contrast Media have the same osmolality as plasma. Cps: Viscosity in
Centipoise Data of viscosity from [188].
(Reproduced and modified from [6], with permission).
(Reproduced and modified from [57], with permission).

value of SCr of 1.8 mg/dL; but when baseline SCr was above
1.8 mg/dL the incidence of CIN was higher in the iohexol
group.

On the basis of their retrospective study, Davenport et al.
[50] concluded that i.v. IRCA is a nephrotoxic risk factor, but
not in patients with a stable SCr <1.5 mg/dL or eGFR >45
mL/min/1.73 m2.

5. Pathogenesis of CIN

The pathogenesis of CIN has not been fully elucidated. Many
mechanisms are known to be involved [51]. Immediately
after intravascular injection, the IRCA cause hemodynamic
changes: transient renal vasodilatation with increase in renal
blood flow (RBF), followed by a prolonged renal vasocon-
striction (including the constriction of medullary vasa recta
[52]) with an increase in intrarenal vascular resistances and a
reduction in RBF [53] (see Figure 1), that is associated with
a decrease in the vascular peripheral resistances in extrarenal
vessels [54, 55]. Then IRCA are freely eliminated by the
kidneys by glomerular filtration because of their poor binding
to serum albumin.

The consequent renal ischemia will be particularlymarked
in the outher renal medulla due to its distance from the vasa

recta [54, 55]. This poor blood supply is responsible for
the poor oxygen (O2) delivery to the outer renal medulla
even under physiological condition, despite the need for
O2 because of the high local O2 consumption due to the
important active tubular reabsorption in the medullary thick
ascending limb of Henle’s loops that are here located.
Any condition that increases tubular fluid reabsorption in
these tubular segments will increase outer medulla hypoxia.
Since the IRCA cause an osmotic diuresis, the consequent
increase of tubular fluid delivery to the medullary thick
ascending limb of Henle’s loops and the resulting increase
in its tubular reabsorption (that implies an increase in O2
consumption) will be responsible for a more severe hypoxia
[6, 56, 57].

Medullary hypoxia is a crucial point in the pathogenesis
of CIN (see Figure 1). It causes the formation of reactive
oxygen species (ROS) [58, 59] which (a) exert direct
tubular and vascular endothelial injury, (b) intensify renal
parenchymal hypoxia by virtue of endothelial dysfunction
and dysregulation of tubular transport [60, 61], (c) decrease
of nitric oxide (NO) synthesis that is in part believed to
be due to its reaction with ROS, in particular superoxide
anions (O.−

2 ) [62, 63], leading to the formation of the more
detrimental powerful oxidant peroxynitrite anion (ONOO−)
[64] (Figure 1).
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Figure 1: The complex mechanisms that lead to radiocontrast-associated decline of GFR. The dotted arrows indicate the reaction of the
reactive oxygen species (ROS) (superoxide anions: O.−

2 ) with nitric oxide (NO⋅) that not only causes a reduction in NO levels, but also leads
to the formation of peroxynitrite anion (ONOO−), a potent oxidant that causes cell injury.

It has been recently demonstrated that a recombinant
manganese superoxide dismutase, administered in vivo to rats
undergoing diatrizoate treatment, was able to reduce renal
oxidative stress, thereby preventing the reduction of GFR and
the renal histologic damage that follows IRCA administration
[65].

The IRCA have also a cytotoxic effect causing apoptosis
and cell death of both endothelial and epithelial tubular
cells [62]. The damaged and the apoptotic endothelial
cells may contribute to the decrease in NO production in
descending vasa recta [62] and may also release endothelin
that contributes to renal vasoconstriction [56, 66].

Once the IRCA have been filtered by glomeruli, they
are concentrated inside the renal tubules because of water
reabsorption (IRCA are not reabsorbed by renal tubules),
exposing the renal tubular cells to their severe direct damage
[67].

Many investigators have studied the possible molecular
mechanisms of IRCA cytotoxicity highlighting signaling
pathways that may be affected by IRCA [68–77]. It has been
demonstrated that all IRCA cause a dramatic decrease in the
phosphorylation (activation) of the Akt kinase [69, 71]. This
kinase has an important role in cell survival and proliferation
[78–80]. Therefore, this may explain in part the cytotoxic

effects of IRCA. The decrease in cell viability due to IRCA
exposure of human renal tubular cells transfected with a
plasmid encoding constitutively activeAktwas lessened [69].
Yano et al. [81] have suggested that Akt plays a role in
reversing the up-regulation of pro-apoptotic molecules by
IRCA in porcine renal tubular cells.

As well as the observed reduction in the phosphorylation
(activation) of Akt, IRCA also caused the dephosphorylation
(inactivation) of the ERK1/2 kinases that are believed to play
a pivotal role in cell survival/proliferation, concomitant with
a decrease in cell viability [69]. Our group also demonstrated,
in HK-2 cells, that IRCA affect the activation/deactivation of
transcription factors, like FoxO3a and STAT3, which control
the genes involved in apoptosis and cell proliferation as well
as the phosphorylation of the p38 and JNKMAP kinases that
are known to play a role in apoptosis [70, 71].

Contrast-induced apoptosis may also be due to the acti-
vation of shock proteins and the concurrent inhibition of
cytoprotective enzymes and prostaglandins [82, 83].

Under physiological conditions, the Na+/Ca2+ exchanger
(NCX) pumps the Ca2+ outside the renal tubular epithelial
cells using the Na+ concentration gradient across the cell
membrane to keep a low intracellular Ca2+ level. After IRCA
injection, NCX may reversely extrude Na+ for Ca2+ influx
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and result in intracellular Ca2+ overload that is considered to
be an important factor in the pathogenesis of CIN [84, 85]
(see Figure 1).

As mentioned above, the concentration of the IRCA
within the tubular lumen increases considerably because of
tubular fluid reabsorption. The result will be a progressive
increase in tubular fluid osmolality and an overproportional
increase in tubular fluid viscosity because of the exponential
concentration-viscosity relationship [21, 51]. But the fluid
flow rate through a tube increases with the pressure gradient
and decreases with the flow resistance; thus, the resistance
increases proportionally to fluid viscosity; consequently, the
increased viscosity caused by IRCA increases the intratubu-
lar pressure [21], thereby creating a condition of tubular
obstruction that contributes to the tubular epithelial damage
and to the fall of GFR [57] (see Figure 1).

Thus, in summary, the IRCA cause a fall in GFR (a) by
renal vasoconstriction with decrease of RBF, (b) by renal
tubular epithelial injury and (c) by osmotic diuresis (see
Figure 1), with crucial points being renal medullary hypoxia
and oxidative stress [51].

6. Conditions Predisposing to CIN

Renal insufficiency represents the most important condition
predisposing to CIN whatever its cause.

The lower the eGFR, the greater is the risk of CIN
following the administration of IRCA. An eGFR of 60
ml/min/1.73 m2 has been suggested as a reliable cut-off point
for identifying patients at high risk for CIN [37].

Despite the recent observation by Neyra et al. [86] in a ret-
rospective observational in-hospital study that CIN occurred
with similar frequency, following coronary angiography,
in 1160 patients with (eGFR < 60 mL/min/1.73 m2) or
without (eGFR ≥ 60 mL/min/1.73 m2) renal insufficiency,
the incidence of CIN in patients with CRF ranges from 14.8
to 55%.

Patients with CRF have defective antioxidant systems [87]
and increased oxidative stress associated with inflammation
and endothelial dysfunction [88]. This may explain why
pre-existing CRF represents the most common condition
predisposing to CIN.

Another important condition favoring the development of
CIN is Diabetes mellitus, particularly when associated with
renal insufficiency [89].

Since patients with diabetes mellitus have a high sensi-
tivity of their renal vasculature to the vasoconstrictive agent
adenosine and the IRCA from one side increase the release
of renal adenosine and from another side stimulate renal
adenosine receptors, all of these conditions may explain the
particular susceptibility of diabetic patients to IRCA [90].
Diabetics also have an increased circulating and renal levels
of endothelin, and IRCA further increase the production of

endothelins [91]. This also may contribute to the particular
susceptibility of diabetic patients to IRCA.

In a double-blind randomized study using iopamidol-370
or iodixanol-320 for coronary angiography in 122 diabetic
patients with a SCr of ≤2 mg/dL, 17 patients (10 iopamidol
vs 7 iodixanol; p = NS) had an increase in SCr ≥25% over
baseline; the Authors concluded that diabetic patients with
normal or mild renal dysfunction are at risk for CIN [92].

In a recent prospective observational study on 585
unselected patients who underwent elective or emergency
coronary angiography or PCI, a 5.1% incidence of CIN was
observed in diabetic patients with preserved renal function,
an incidence comparable to that of a non-diabetic population
[93]. On the other hand, in 421 patients with CRF undergoing
coronary angiography 137 with diabetes mellitus had a 20%
incidence of CIN against 11% in 140 with pre-diabetes and
5.5% in 144 with a normal fasting glucose [94].

The incidence of CIN in diabetic patients seems to vary
from 5.7 to 29.4%; at any given degree of baseline GFR,
diabetes doubles the risk of developing CIN compared with
non-diabetic patients [37].

Thus, most Authors do not regard the presence of diabetes
mellitus in the absence of renal failure as a risk factor for CI-
AKI [95].

Predisposing factor may be dehydration, used to indicate
salt depletion, as it may occur after salt losses (following
abnormal gastrointestinal, renal or dermal fluid losses)
that are not adequately replaced by salt intake. The term
dehydration indicates deficit of water, as it may occur in old
patients who do not ingest adequate amount of water during
the day because of their impaired sensation of thirst due to
their advanced age [96]. Sometimes, however, dehydration
is used to indicate salt depletion, as may occur after salt
loss (following abnormal gastrointestinal, renal or dermal
fluid losses) that are not adequately replaced by salt intake.
When we perform intravascular injection of IRCA in patients
who are dehydrated and/or hypovolaemic, angiotensin II and
vasopressin augment tubular fluid reabsorption in the kidney,
which further increases the tubular concentration of the
IRCA, and, due to the concentration-viscosity relationship,
overproportionally increases tubular fluid viscosity. This will
lead to a fall in the GFR and to an increase of the direct
cytotoxicity of IRCA on renal tubular epithelium. This is
why dehydration and/or volume contraction and reduction of
‘effective’ circulating blood volume are major risk factors for
CIN.

Other predisposing factors include: (a) concomitant use of
nephrotoxic drugs such as aminoglycosides, cyclosporin A,
amphotericin, cisplatin and nonsteroidal anti-inflammatory
drugs [97, 98]; (b) hypercholesterolemia [99]; the use of
renin-angiotensin-aldosterone system blocking agents such
as angiotensin-converting enzyme inhibitors (ACEIs) and
angiotensin II receptor blockers (ARBs) (whose role in
the pathophysiology of CIN remains controversial [89])
(d) prolonged hypotension; (e) reduction of the ‘effective’
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intravascular volume due to congestive heart failure, liver
cirrhosis, nephrotic syndrome [29]; (f) use of large doses
of IRCA and/or their multiple injections within 72 hrs;
(g) route of administration (intravenous of IRCA are less
risky than intra-arterial injection); (h) high osmolality and
viscosity of contrast media; (i) advance age (>65 years); (j)
anemia; (k) sepsis and (l) renal transplantation [6, 57, 100,
101].

7. Measures for Prevention of CIN

The most important and crucial preventive measure of CIN
is an adequate hydration of the patient [101–104]. In the
past, physicians, in preparing the patient for a radiographic
procedure using IRCA, were suggesting to avoid any oral
intake starting the day before contrast administration. This
measure was decided with the purpose to prevent vomiting
and nausea (common symptoms with the use of high-
osmolality IRCA) and to allow for tracheal intubation in
case of any emergency. The strategy to keep the patient in
a fasting state was correct, indeed, at that time; but many
patients and physicians erroneously considered a restriction
of fluids in parallel with the restriction of food [102].
This misconception caused patient dehydration before using
IRCA.

Thus, we have not only to avoid the erroneous measure
of ceasing liquids to the patients, but contrarily we have
to give the patient a volume supplementation, e.g., 500
mL of water orally before and 2,500 mL for 24 hours
after IRCA administration to secure a urine output of at
least 1 mL/min [105]. In high-risk patients the oral water
load may be replaced by i.v. infusion of 0.9% saline at
a rate of approximately 1 mL/kg b.w. per hour, begin-
ning 6–12 hours before and continuing for up to 12–24
hours after the radiographic examination (if urine output
is appropriate and cardiovascular conditions allow it) [38,
102]. The purpose is to cause expansion of the intravascular
volume, to suppress the renin-angiotensin cascade and conse-
quently to reduce renal vasoconstriction and hypoperfusion.
Furthermore, the resulting increase in urine output will
limit the duration of IRCA contact with renal tubules and
consequently its toxicity on the renal tubular epithelium
[106, 107].

Some Authors suggest using sodium bicarbonate hydra-
tion that has been shown to be superior to sodium chloride in
clinical studies and meta-analysis [108–118]. For coronary
angiography or intervention 154-mEq/L infusion of sodium
bicarbonate as a bolus of 3 mL/kg b.w./hour for 1 hour before
the administration of IRCA, followed by 1 mL/kg/hour for 6
hours during and after the procedure have been used [109].
The reason for using bicarbonate is that alkalinization of
tubular fluid by bicarbonate will reduce the production and
increase the neutralization of oxygen free radicals, thereby
protecting the kidney from injury by IRCA [111, 112, 119,
120].

However, other studies have not found any benefit with
sodium bicarbonate hydration versus sodium chloride [121–
124] or have observed even an increased incidence of CIN
[125].

The Committee of the European Renal Best Practice
“recommends volume expansion with either isotonic sodium
chloride or sodium bicarbonate solutions, rather than no
volume expansion, in patients at increased risk for CIN”
[126].

It is important that, before any radiographic procedure
using the IRCA, renal function of the patient is measured,
preferably using eGFR. It is also important to monitor renal
function also after the procedure once daily for 5 days [38,
101].

It has been also suggested to discontinue potentially
nephrotoxic drugs, such as aminoglycosides, vancomycin,
amphotericin B, metformin and nonsteroidal anti-
inflammatory drugs [101].

It is important to choose the least nephrotoxic radiocon-
trast agent: iodixanol (IOCM) and iopamidol (LOCM) appear
to be the IRCA of choice to reduce risk of CIN [127]; and to
use it with the lowest dosage possible. Before the advent of
CT, intravenous urography and angiography were the major
indications for IRCA. In the pre-CT era, most radiologists
were utilizing 30–50ml HOCM and with hand injection rates
of less than 1 ml/s for urography. The average IRCA dose for
CT is approximately 100–150 ml and with power injection
rates of up to 3–4 ml/s [128].

High doses of IRCA are required in coronary angiography
and percutaneous coronary intervention. For these proce-
dures, some formulas have been suggested to calculate their
least dangerous dosage:

(A) Cigarroa’s formula: 5 mL of IRCA/kg b.w./SCr
(mg/dL). The maximum dose acceptable is 300 mL for
diagnostic coronary arteriography [129].

(B) Laskey’s formula: volume of IRCA to calculated CrCl
ratio with a cut-off point of the ratio at 3.7 [130]; a cut-off
point of the ratio at 2.0 is better: below a ratio of 2.0 CIN
would be a rare complication; it would increase dramatically
at a ratio of 3.0 [127, 131].

(C) Ratio of grams of iodine to the calculated CrCl; a ratio
of 1.42, or even better a ratio of 1.0, would prevent CIN [127].

Since ROS may play an important role in the patho-
genesis of CIN, it has been suggested to use antioxidants
to prevent CIN. The first antioxidant used for this purpose
was N-acetylcysteine (NaC) [132]. Reddan et al. [119] have
conducted a systematic literature review of the evidence
available from published reports, between 2000 and 2008,
of prospective, randomized, controlled trials comparing
contrast media and preventive strategies. Among 27 studies,
all but 1 reported the use of prophylactic volume expansion
as part of the protocol. The majority of trials compared
NaC with no NaC: 6 demonstrated a significant benefit, 1
showed a borderline benefit in favor of NaC and 1 found a
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significant disadvantage in NaC use [133]; 15 failed to detect
a difference in CIN incidence between treatment with NaC
and no treatment [134].

Also, short-duration pretreatment with NaC has been
shown to reduce IRCA-induced cytotoxicity in human
embryonic kidney cells treated with the ioxithalamate, iopro-
mide and iodixanol [135] and to ameliorate the ischemic
renal failure in animal models [136]. The suggested dosage is
600 mg orally twice daily, one day before and on the day of
procedure [38] or, in patients unable to take the drug orally,
with an i.v. dose of 150 mg/kg b.w. over half an hour before
the procedure or 50 mg/kg b.w. administered over 4 hours
[137].

But overall, the efficacy of NaC against CIN is still con-
troversial, for whilst some Authors have reported protective
results [31, 137, 138], others have denied it [125, 133, 139–
144].

The efficacy of ascorbic acid, another antioxidant, is also
controversial [135, 145–148]. The dosage of ascorbic acid
that has been suggested to prevent CIN is 3 g orally 2 hours
before the procedure and 2 g during the night and in the
morning after the procedure [145, 146].

A comparison between different antioxidants has shown
that NaC, at a dose of 1,200 mg orally twice a day before
and on the day of coronary catheterization, is more beneficial
in preventing CIN than ascorbic acid, particularly in dia-
betic patients with renal insufficiency undergoing coronary
angiography [148]. Recently, a meta-analysis, with 1536
patients who completed the trial, has suggested that ascorbic
acid decreased by 33% the risk of developing CIN [149].

Also the antioxidant vitamin E has been used to prevent
CIN. The oral administration of either 350 mg/day of 𝛼-
tocopherol or 300 mg/day of 𝛾-tocopherol (5 days prior
to the coronary procedure and continued for a further 2
days post-procedure) in combination with 0.9% saline (1
mL/kg/h for 12 hours before and 12 hours after) has been
shown to be effective in protecting against CIN in patients
with CRF undergoing coronary procedures with Iopromide:
CIN developed in 14.9% of cases in the placebo group, but
only in 4.9% and 5.9% in the 𝛼- and 𝛾-tocopherol groups,
respectively [150].

Nebivolol is a third-generation 𝛽1-adrenergic receptor
antagonist [151, 152]. It has been used, at a dosage of 5
mg/day for one week or 5 mg every 24 hours for 4 days, to
protect the kidney against CIN through its antioxidant and
NO-mediated vasodilating action [153–155].

Statins have been demonstrated to prevent CIN in patients
undergoing PCI [156–163]. Rosuvastatin, at a dosage of
10 mg/day for five days, two days before, three days post
the procedure, reduced the risk of CIN in patients with
diabetes mellitus and chronic kidney disease undergoing
coronary/peripheral arterial angiography [164]. Simvastatin
had a dose-dependent nephroprotective effect in experimen-
tal rats treated with IRCA [162]. Patients on pravastatin
had a lower incidence of CIN than patients on simvastatin

[165, 166]. Atorvastatin has been used at a dosage of 40
mg/day 3 days before the procedure [167] as well as at a
dosage of 80 mg 12 hours before intervention with another
40 mg pre-procedure, followed by long-term treatment of 40
mg/day [168].

Renal outer medulla hypoxia is a crucial point in the
pathogenesis of CIN. As we have mentioned, this hypoxia
is due both to low O2 delivery because of normal local
hypoperfusion due to anatomical reasons and to the high O2
consumption due to the high active sodium reabsorption in
the thick ascending limb of Henle’ loops. The osmotic diure-
sis induced by IRCA causes an increased delivery of tubular
fluid to the thick ascending limb of Henle’s loops, thereby
increasing the active sodium reabsorption and consequently
O2 demand, thereby aggravating hypoxia. Thus, it has been
thought that furosemide, by decreasing sodium reabsorption
in this tubular segment [169], would reduce medullary O2
consumption and decrease renal medullary hypoxia.

Unfortunately, several studies have demonstrated no pro-
tection against CIN when utilizing this diuretic or even
deleterious effects [170–172], mainly related to the salt
depletion caused by furosemide. Thus, it has been concluded
that diuretics should be avoided before contrast exposure
[86].

To overcome the problem of hypovolemia caused by the
diuretic, a perfect combination of hydration plus furosemide
has been suggested: this is obtained by delivering i.v. fluid
in an amount exactly matched to the volume of urine
produced by the patient under the effect of furosemide [173].
This procedure is accomplished by a special device, called
‘RenalGuard’, that would guide the physician in achieving
high urine output while simultaneously balancing urine
output and venous fluid infusion to prevent hypovolemia.

The availability of the device RenalGuard allowed
Briguori et al. [173] to perform a multicenter, randomized,
investigator-driven study comparing 2 different strategies to
prevent CIN in patients at high risk [174]. All consecutive
patients from January 2009 to December 2010 with CRF
scheduled for coronary and/or peripheral angiography and/or
angioplasty, who had an eGFR of ≤30 mL/min/1.73 m2

were included in the trial. Patients were randomly assigned
to either the Control Group or the RenalGuard Group.
Patients of the Control Group received 154 mEq/L sodium
bicarbonate in dextrose and H2O (an initial intravenous bolus
of 3 mL/kg per hour for at least 1 hour before contrast
injection, followed by the same fluid at a rate of 1 mL/kg
per hour during contrast exposure and for 6 hours after
the procedure). All patients received also NaC orally at a
dose of 1200 mg twice daily the day before and the day of
administration of the contrast agent; an additional NaC dose
(1200 mg diluted in 100 mL normal saline) was administered
intravenously during the procedure. (The total NaC dose
was ≥6 g). Patients of the RenalGuard Group were treated
by hydration with normal saline plus NaC controlled by
the RenalGuard system: an initial bolus of 250 mL was
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infused over 30 minutes; then furosemide (0.25 mg/kg b.w.)
was administered intravenously to achieve an optimal urine
flow of ≥300 mL/h. When this urine flow was reached,
the patient was moved into the catheterization laboratory,
and the procedure was started. Controlled hydration by the
RenalGuard system continued during the procedure and for
4 hours after the procedure; urine flow was monitored and
maintained at the target value throughout the procedure and
during the next 4 hours. NaCwas administered to the patients
of RenalGuard Group only intravenously (1500 mg in 1 L
saline) throughout the observation time (i.e. before, during
and after the radiographic procedure). Iodixanol was the
IRCA used in all patients. The results were remarkable: the
incidence of CIN (increase in SCr concentration ≥0.3 mg/dL
above the baseline value at 48 hours after administration of
IRCA or the need for dialysis) was 16% in the Control Group
(standard hydration) and 5% in the RenalGuard Group.

Similar results have been obtained by Marenzi et al.
[175]. In patients with CRF undergoing coronary procedures,
furosemide-induced high urine output with matched hydra-
tion significantly reduced the risk of CIN (≥25% or ≥0.5
mg/dL rise in SCr over baseline) with an incidence of 4.6%
versus 18% of controls (𝑝 = 0.005).

Calcium channel blockers have also been suggested to
prevent CIN, based on what was mentioned earlier regarding
the fact that, after IRCA injection, NCX may reversely
extrude Na+ for Ca2+ influx and result in intracellular Ca2+
overload, that is believed to be a key factor in ischemic cell
injury in CIN [84]. Thus, calcium channel blockers have
been hypothesized to have protective effects against CIN.
But their use have given controversial results, protective for
some Authors [176, 177], non-protective according to others
[67, 178].

It has also recently been reported that a crude fruit extract
could reverse the loss in cell viability due to the HOCM
sodium diatrizoate in human renal proximal tubular cells in
vitro [179].

8. Dialytic Measures for Prevention of CIN

The preventive measures just mentioned are particularly
useful in patients with eGFR of >30 mL/min.

What can be done with patients with eGFR of ≤30
mL/min ? Fortunately, the IRCA are easily dialyzed because
of their poor binding to serum albumin. Thus, the use of
either hemodialysis or hemofiltration has been suggested
to remove IRCA immediately after the radiographic pro-
cedure. Schindler et al. [180] demonstrated, in patients
with CRF (most of whom were in chronic dialysis), that
different dialysis techniques do remove IRCA (iopromide
or iomeprol), with high-flux hemodialysis and hemodiafil-
tration being more effective than low-flux hemodialysis and
hemofiltration. But Lehnert et al. [181] demonstrated that,
although hemodialysis eliminates contrast media, it does
not prevent CIN. Vogt et al. [182] performed a randomized

trial to test whether CIN can be avoided by prophylactic
hemodialysis immediately after the administration of low-
osmolality contrast media in patients with impaired renal
function (baseline serum creatinine level >2.3 mg/dL); renal
function was recorded before and during the 6 days after
administration of contrast media.

The prophylactic hemodialysis did not diminish the rate of
CIN. These results suggested that, even if dialysis is carried
out immediately, the early damage has already triggered
a cascade of pathogenic events, which cannot be reversed
[183]. Hence, the effects of hemodialysis have been negative
[184] with only a few exceptions. Good results were obtained
by Lee et al. [185], who evaluated 82 patients with CrCl of
13 mL/min undergoing coronary angiography; hemodialysis
with polisulfon decreased the incidence of CIN (5% vs 35% in
non-dialyzed controls) and mortality (0 vs. 13%). Marenzi et
al. [186] have demonstrated that hemofiltration is an effective
strategy for CIN prevention in patients with CRF (CrCl
≤30 mL/min) who are undergoing cardiovascular procedures
provided that is performed for 6 hours before and for 18 to 24
hours after contrast exposure.

Better results have been obtained with continuous ven-
ovenous hemofiltration (CVVH). Thus, Guastoni et al. [187]
performed CVVH in 53 consecutive patients with eGFR
<30 ml/min/1.73 m2 undergoing diagnostic or interventional
coronary procedures using iopamidol; CVVH was started
immediately after the angiographic procedure. Six-hour
CVVH resulted in iopamidol removal comparable with that
of 12-hour diuresis (i.e. 43% vs 42%). CIN occurred in only
7.5% of patients in the whole population.
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PCI: Percutaneous coronary intervention;
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ARF: Acute Renal Failure;
SCr: serum creatinine;
eGFR: estimated glomerular filtration rate;
CrCl: creatinine clearance;
MDRD: Modification of Diet in Renal Disease;
CKD-
EPI:

Chronic Kidney Disease Epidemiology
Collaboration;

RBF: renal blood flow;
NO: nitric oxide;
ROS: reactive oxygen species;
CRF: chronic renal failure;
ACEi: angiotensin-converting enzyme inhibitors;
ARBs: angiotensin II receptor blockers;
NaC: N-acetylcysteine;
CVVH: continuous venovenous hemofiltration;
Cps: viscosity in centipoise.
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