Research Article

TiO₂/FetiO₃/WO₃ Ternary Composite Semiconductor as Efficient Photocatalyst: Structural Designing, Characterization and Investigation of Photocatalytic Efficiency

Parvathy S¹, Saranya S¹ and Sivakumar S²

¹Department of Chemistry, Government Arts College, Salem-7, India
²Department of Chemistry, E. R. K Arts and Science College Dharmapuri-636905, India

Abstract. WO₃, FeTiO₃ and TiO₂ photocatalyst prepared by simple sol-gel method followed by thermal treatment at 550°C, 550°C and 450°C for 3 hours respectively. TiO₂/FeTiO₃/WO₃ ternary composite has shown good activity for the degradation of reactive dyes in UV-visible light than that of binary composites such as TiO₂/WO₃, TiO₂/FeTiO₃. The prepared photocatalyst characterized by various techniques. 2 wt% TiO₂/FeTiO₃/WO₃ ternary composite has demonstrated highest activity for the degradation of Reactive Blue 160 (RB 160). The composite photocatalyst also has good reusability; the 2 wt% TiO₂/FeTiO₃/WO₃ photocatalyst completely degraded RB 160 in 120 minutes than that of parent photocatalysts. COD analysis of the degraded dye solution shows more than 70% of dye molecules in 100 mg l⁻¹ reactive dye solution were mineralized in 3 hours. Hence, RB 160 photocatalyst will be an efficient and simplest method for the degradation of organic dyes and other organic pollutants in industrial effluent.

Keywords: Photocatalyst, sol-gel, composite, pollutants, dye

1. Introduction

Textile effluent with unfixed dye molecules is the most important sources of water pollution [1,2]. Generally, wastewater containing organic dyes has enormous quantities of aromatic, which are found to be highly stable in nature. Conventional biological treatment methods are ineffective for the decolorization and mineralization of most of the organic dyes [3]. To minimize environmental problems due to the effluents containing residual dyes, efficient wastewater treatment technologies such as advanced oxidation processes (AOPs) and so on have been developed [4-6]. Heterogeneous photocatalysis is one of the important AOPs, which has been successfully used to oxidize many organic pollutants present in aqueous systems [7-9]. In this process semiconductors like TiO₂, ZnO, CdS, Fe₂O₃, etc., were used as photocatalyst for the mineralization of organic compounds to CO₂, water and mineral acids [10]. Photocatalytic activity was first popularized by the famous study of the ‘Honda-Fujishima effect’ on photoelectrochemical water splitting using a single-crystal titania electrode, which has been broadly used in many applications, including water cleavage, domestic and industrial
wastewater treatment, air cleaning, and self-cleaning surfaces. However, photocatalysis processes encounter low quantum efficiencies using traditional TiO$_2$ photocatalysts, which is the primary limitation of widely using sunlight energy. The band gap of TiO$_2$ (>3.0 eV) limits its light absorption to ultraviolet irradiation, which only constitutes approximately 4% of the solar spectrum, whereas visible light accounts for 43% and is the principal component of indoor artificial illumination, and only approximately 5% of radiation that reaches the earth contains UV light [11-16]. An effective and simple strategy to improve the photocatalytic activity of TiO$_2$ is constructing heterojunction with suitable semiconductors with a narrow band gap. These heterojunctions has great potential in tuning the electronic properties of the composite photocatalysts and efficient separation of photogenerated electron-hole pairs. However, the heterojunction of TiO$_2$ coupled with other narrow band gap semiconductors like CdS, V$_2$O$_5$, WO$_3$, Fe$_2$O$_3$, SeO$_2$ or FeTiO$_3$ increases its photocatalytic activity [17-25]. In addition, the lower efficiencies of traditional binary metal-oxide photocatalysts (e.g. TiO$_2$) are attributed to the high rate of electron-hole recombination after photo-assisted separation. In order to develop highly-active photocatalysts, second-generation visible-light sensitive photocatalysts of ternary metal oxides obtained via environmentally-friendly synthesis processes have increased in popularity recently. Approaches to improve photocatalytic efficiency and reusability have been studied, such as the development of Cadmium sulphide based and Iron titanate based visible-light driven photocatalysts with lower band energies to enhance visible-light absorbance [26]. In FeTiO$_3$/TiO$_2$/WO$_3$, TiO$_2$ was sensitized by the FeTiO$_3$ and WO$_3$ in visible light, whereas in the ternary heterojunctions of wide band gap semiconductors such as TiO$_2$ enhancement of photocatalytic activity was due to the separation of photogenerated electron-hole pair.

2. Materials And Method

This chapter deals with the method of preparation of doped and undoped photocatalyst, characterization techniques and the experimental setup used for the carrying out the photocatalytic degradation process.

2.1 Chemicals Used

Reactive Blue160 a widely used in textile dye with two monochlorotriazine anchor groups supplied by Vexent dyeaux India Pvt. Ltd, Mumbai (Minimum dye content 70%) supplied by Loba Chemie India Pvt. Ltd, (Minimum dye content 90%) was used for photocatalytic degradation studies. Titanium tetrachloride (99%) and Ferrous Sulphate were supplied by Loba Pvt. Ltd; commercial tungstate (WO$_3$) was purchased Aldrich Pvt. Ltd; dye solutions for photocatalytic studies were prepared in double distilled water. Sodium hydroxide and hydrochloric acid (both AR grades from Qualigens) were used for modifying the pH of the solutions. Potassium dichromate (AR), Silver sulphate (GR), mercury sulphate (GR) 99% Ferroin (GR) and Sulphuric acid were used for COD analysis.

2.2 Synthesis of Photocatalysts

Synthesis of anatase TiO$_2$. All the photocatalysts was synthesized from TiCl$_4$ as reported elsewhere [27]. In the typical synthesis of TiO$_2$, 5 mL of TiCl$_4$ was added in 50 mL of ice cold
distilled water with stirring for 2 h and a clear solution was obtained after stirring, then to that solution, aqueous ammonia was added drop wise till the formation of a gel. The gel solution was washed repeatedly with distilled water to remove the entire chloride ions in the solutions and then it was kept for drying at 10°C to remove part of the absorbed water. The dry gel was milled and calcinated at 450°C for 4 h to obtain crystalline TiO2.

Synthesis of FeTiO3. In the Ilmenite FeTiO3 synthesis, 2.5 mL of titanium tetrachloride was dissolved in 50 ml of ice cold distilled water. Separately, in another beaker 5.07 g of FeSO4.7H2O was dissolved in 100 ml distilled water and then the solution was slowly added to the TiCl4 solution with constant stirring. The pH of the mixture was adjusted to pH 8 by adding an aqueous ammonia drop wise until the formation of a gel. The gel was aged for 12 hours, then washed repeatedly with distilled water for the removal of chloride ions and followed by drying at 100°C to remove part of the absorbed water. The dry gel was the grounded into a fine powder in a pestle mortar and then calcinated at 550°C for 7 hours for the formation of FeTiO3.

Preparation of FeTiO3/TiO2 heterojunction composite photocatalysts. In the preparation of 3 wt% FeTiO3/TiO2 heterojunction composites, 0.03 g of FeTO3 was first dispersed in 40 ml of ethanol, to that suspension, 0.2750 g of oxalic acid was added, and the mixture was stirred in a magnetic stirrer to form a homogeneous suspension. To that suspension 0.97 g of TiO2 was added, and the stirring was continued for 12 hours and then the suspension was dried and subsequently annealed at 300°C for 3 hours in a muffle furnace. The FeTiO3/TiO2 heterojunction composites with 1, 2, 3, 4 and 5 wt% of FeTO3 were prepared by varying FeTO3 and TiO2 ratios as in a same method.

Preparation of WO3/TiO2 heterojunction composite photocatalysts. In the synthesis of 2 wt% WO3/TiO2 heterojunction composites, 0.02 g of WO3 was first dispersed in 40 ml of ethanol, to that suspension, 0.2750 g of oxalic acid was added, and the mixture was stirred in a magnetic stirrer to form a homogeneous suspension. To that suspension 0.98 g of TiO2 was added, and the stirring was continued for 12 hours and then the suspension was dried and subsequently annealed at 300°C for 3 hours in a muffle furnace. The WO3/TiO2 heterojunction composites with 4, 6, 8 and 10 wt% of WO3 were prepared by varying WO3 and TiO2 ratios as in a same method.

Preparation of ternary composite photocatalysts: In the preparation of 0.5 wt% FeTiO3/TiO2/WO3 ternary composites, 0.05 g of WO3 and 0.995 g of FeTiO3/TiO2 was mixed with pestle mortar and ground gently to get fine powder. This ternary mixture subsequently annealed at 300°C for 3 hours in a muffle furnace. The FeTiO3/TiO2/WO3 ternary composites with 1, 2, 3, 4 and 2.5 wt% of WO3 were prepared by varying FeTO3/TiO2 and WO3 ratios as in a same method and labeled as FTW-1, FTW-2, FTW-3, FTW-4 and FTW-5 respectively.

2.3 Characterization of Photocatalyst

The powder X-ray diffraction patterns of the photocatalyst were recorded using Bruker AXS D8 Advance X-ray diffractometer with Cu-Kα radiation (λ=0.15406 nm) in the 2θ range 10° to 90° at room temperature. The surface morphology of the catalyst was analyzed using the scanning electron microscope JEOL Model JSM-6390LV. UV-Visible diffuse reflectance data were collected over the spectral range 200-800 nm with a Varian Cary-500 UV-Vis-NIR spectrometer equipped with an integrating sphere attachment and Gamma alumina was used as the reference material.
2.4 Photocatalytic Studies

All the photocatalytic experiments were performed under natural sunlight on clear sky days during the period of January to March-2019. In a typical experiment, 50 ml of dye solution (concentration 50 mg l⁻¹) was taken with 50 mg of photocatalyst in a 250-ml glass beaker. Then the dye solution was kept in direct sunlight with continuous aeration and the concentration of the dye remains was measured periodically by measuring its light absorbance at the visible λ_{max} by using Elico SL- 171 Visible spectrophotometer. In order to avoid the variation in results due to fluctuation in the intensity of the sunlight, a set of experiments has been carried out simultaneously. For pH studies the pH of the dye solutions was modified to different values (3, 5, 7, 9 and 12) by using 0.1 M HCl and NaOH solution.

Triazine dye Reactive Blue-160 (Figure 1) was used as a model pollutant to analyze the photocatalytic activity of nanocomposites.

Chemical formula: C_{38}H_{23}C₁₂N₁₄Na₅O₁₈S₅
Molecular weight: 1309.85
CAS No: 71872-76-9
λ_{max}: 616.

2.5 Intensity of Light

The potassium ferrioxalate actinometry developed by Hatchard and Parker was the most useful, solution-phase actinometer. The light intensity was measured as follows: Irradiate the appropriate actinometer solution in a photochemical reaction cell, whose volumes are V₁ (say 10 ml), for a period sufficient to produce a concentration of Fe^{2+} between 0.0005 × 10⁻⁶ and 3 × 10⁻⁶mol/ml (usual irradiation time: 1-10 minute of irradiation is desirable). After irradiation for ‘t’ seconds, and mixing well aliquot volumes, V (say, 5 ml) of the solution and a buffer solution of volume equal to about one-half volume of the photolytic (say, 2 ml) are added. After diluting it to volume, V₁ with water and mixing well, the solution is left without any disturbance for half an hour. All this operation is performed in the absence of actinometrical active light. Then an

![Figure 1: Structure of Reactive Blue-160.](image-url)
identical but un-irradiated solution is prepared which is used as blank.

The Light intensity formula was given by,

\[
\text{Intensity of Sunlight, } I \ (\text{in Einstein s}^{-1}\text{cm}^{-2}) = \frac{AVW^3}{ed\Phi V1a}
\]

Where,

A=Absorbance (at 510 nm) of irradiation actinometer solution corrected for absorbance of blank.

D=Path length (in cm) of the absorption cell used in measurement of A.

E=Extinction coefficient of ferrous 1, 10 phenanthroline complex at 510 nm (=1.11 × 10^{-1} L mol^{-1}cm^{-1}).

\(\Phi\)=Quantum yield of ferrous production.

\(V_1\)=Volume (in millilitre) of irradiated actinometer solution withdrawn.

\(V_2\)=Volume (in L) of actinometer solution irradiated.

\(V_3\)=Volumes (in millilitre) of volumetric flask used for dilution of irradiated liquid.

\(T\)=Irradiated time in minutes.

The intensity of sunlight on all experimental days was measured by ferrioxalate actinometry and the average intensity of sunlight during the period of study was 4.7421 × 10^{-7} Einsteins^{-1}cm^{-2}.

3. Result and Discussion

3.1 XRD Pattern of Various Photocatalysts

XRD patterns of Pure FeTiO\(_3\), WO\(_3\), 3 wt% FeTiO\(_3\)/TiO\(_2\), 4 wt% WO\(_3\)/TiO\(_2\) and 2 wt% WO\(_3\)/FeTiO\(_3\)/TiO\(_2\) ternary heterojunction, were given in the Figure 2. The XRD pattern indicates FeTiO\(_3\), were in ilmenite (JCPDS No.75-1211) phase respectively. The diffraction patterns of TiO\(_2\) match the patterns in JCPDS card No. 21-1272, which indicating that TiO\(_2\) was in pure anatase phase. The diffraction patterns of WO\(_3\)/TiO\(_2\) and FeTiO\(_3\)/TiO\(_2\) heterojunctions are similar like the patterns of anatase TiO\(_2\). The diffraction peak of FeTiO\(_3\) and WO\(_3\) were undetectable in the diffraction patterns of the FTW-2, this could be attributed to the high degree of dispersion of FeTiO\(_3\) and WO\(_3\) in the matrix of TiO\(_2\) forming solid solution.

3.2 SEM Analysis

Scanning electron microscopic technique is used for the determination of morphologies and dispersion of the photocatalyst. Scanning electronic micrograph of FeTiO\(_3\)/TiO\(_2\) and WO\(_3\)/TiO\(_2\) heterojunctions was shown in Figure 3a and 3b. It consists of irregular agglomerated particles and in the form of bulky agglomerates. Figure 3c and 3d were shown the images of the FeTiO\(_3\)/TiO\(_2\) and WO\(_3\)/TiO\(_2\) heterojunctions respectively. From these micrographs Figure 3e FeTiO\(_3\)/TiO\(_2\)/WO\(_3\) photocatalysts dispersed in the form of small size irregular particles indicates that
Figure 2: XRD patterns of Pure FeTiO$_3$, WO$_3$, 3 wt% FeTiO$_3$/TiO$_2$, 4 wt% WO$_3$/TiO$_2$ and 2 wt% WO$_3$/FeTiO$_3$/TiO$_2$ ternary heterojunction.

Figure 3: Shows the scanning electron micrographs of (a) FeTiO$_3$, (b) TiO$_2$, (c) FeTiO$_3$/TiO$_2$, (d) WO$_3$/TiO$_2$ and (e) 2 wt% WO$_3$/FeTiO$_3$/TiO$_2$ heterojunctions.
WO\textsubscript{3} coupled with FeTiO\textsubscript{3}/TiO\textsubscript{2} photocatalyst.

3.3 DRS Analysis

The diffuse reflectance spectra of synthesized FeTiO\textsubscript{3}, TiO\textsubscript{2}, FeTiO\textsubscript{3}/TiO\textsubscript{2}, WO\textsubscript{3}/TiO\textsubscript{2} and various types of WO\textsubscript{3}/FeTiO\textsubscript{3}/TiO\textsubscript{2} are displayed in Figure 4. FeTiO\textsubscript{3}/TiO\textsubscript{2} shows larger absorption than synthesized TiO\textsubscript{2} in visible region; it reveals that increases the visible light activity of the catalyst. The ternary WO\textsubscript{3}/FeTiO\textsubscript{3}/TiO\textsubscript{2} also shifts to visible light absorption. This indicates coupling of narrow band gap semiconductors with TiO\textsubscript{2}. To calculate the band gap energies of both catalysts, UV-visible spectra in the diffuse reflectance mode (R) were transformed to the Kubelka-Munk function F (R) to separate the extent of light absorption from scattering. The band gap energies of both catalysts were obtained from the plot of the modified Kubelka-Munk function (F (R) E)1/2 versus the energy of the absorbed light E. The band gap energies of bare TiO\textsubscript{2} and FeTiO\textsubscript{3}/TiO\textsubscript{2} and WO\textsubscript{3}/TiO\textsubscript{2} are found to be 3.2 eV, 2.82 eV and 2.75 eV respectively.

3.4 Photocatalytic Studies

Photodegradability of reactive Blue160. The photocatalytic activity of the TiO\textsubscript{2}, FeTiO\textsubscript{3}, WO\textsubscript{3}, FeTiO\textsubscript{3}/TiO\textsubscript{2}, WO\textsubscript{3}/TiO\textsubscript{2} and WO\textsubscript{3}/FeTiO\textsubscript{3}/TiO\textsubscript{2} photocatalyst has been evaluated on reactive blue 160 (RB 160) in the presence of UV-visible light irradiation. This dye has been chosen for the studies since it has a strong light absorption in UV-visible region. The UV-visible transmittance spectrum of the RB 160 solution show that more than 80% of incident light in the wavelength range 200-450 nm was absorbed by 50 mg/l dye solution in a path length of 1 cm. Hence, the degradation of the RB 160 solution with concentration above 50 mg/l in a simple photocatalytic process over a UV active photocatalyst like TiO\textsubscript{2} is difficult and will take more treatment time for complete degradation.

The photocatalytic activity TiO\textsubscript{2} and FeTiO\textsubscript{3}/TiO\textsubscript{2} photocatalyst were shown in Figure 5. The

![Figure 4: UV-visible diffused reflectance spectra of TiO\textsubscript{2}, FeTiO\textsubscript{3}/TiO\textsubscript{2}, WO\textsubscript{3}/TiO\textsubscript{2} and 2 wt% FeTiO\textsubscript{3}/TiO\textsubscript{2}/WO\textsubscript{3}](image-url)
The photocatalytic activity of FeTiO$_3$/TiO$_2$ photocatalyst with different mass ratios exhibits better photocatalytic activity than that of bare TiO$_2$. It could be clearly seen that the photocatalytic degradation rate of RB 160 was gradually increased with increase of FeTiO$_3$ content, which indicated that RB 160 could be degraded more efficiently by FeTiO$_3$ coupled with TiO$_2$ than that of TiO$_2$. It was interesting to note that the 3 wt% FeTiO$_3$/TiO$_2$ exhibited the highest photocatalytic degradation efficiency. But at the higher FeTiO$_3$ content, the photocatalytic activity decreased, suggesting that the optimal FeTiO$_3$ on TiO$_2$ existed when the weight ratio was 3%.

The photocatalytic activity TiO$_2$ and WO$_3$/TiO$_2$ photocatalyst were shown in Figure 6. The photocatalytic activity of WO$_3$/TiO$_2$ photocatalyst with different mass ratios exhibits better photocatalytic activity than that of bare TiO$_2$. It could be clearly seen that the photocatalytic degradation rate of RB 160 was gradually increased with increase of WO$_3$ content, which indicated that RB 160 could be degraded more efficiently by WO$_3$ coupled with TiO$_2$ than that of TiO$_2$. It was interesting to note that the 3 wt% WO$_3$/TiO$_2$ exhibited the highest photocatalytic degradation efficiency. But at the higher WO$_3$ content, the photocatalytic activity decreased, suggesting that the optimal WO$_3$ on TiO$_2$ existed when the weight ratio was 3%.

Further the photocatalytic study has been extended to improve the photocatalytic efficiency of TiO$_2$. This result exhibited in Figure 7a, photocatalytic activities of the various weight ratios of WO$_3$ on FeTiO$_3$/TiO$_2$ heterojunctions in the presence of UV-visible light irradiations. In this study, the optimized 3 wt% FeTiO$_3$/TiO$_2$ heterojunctions coupled with WO$_3$ at various weight ratios. After 60 min of UV-visible illumination, the RB 160 degrades over WO$_3$ and 3 wt% FeTiO$_3$/TiO$_2$ heterojunctions are only 30% and 67%, respectively. However, WO$_3$/3 wt%FeTiO$_3$/TiO$_2$ the heterojunctions composites show the higher photocatalytic degradation rate (71–99%) in the presence of same experimental conditions. It is worth noting that WO$_3$/3 wt%FeTiO$_3$/TiO$_2$ heterojunctions composites could be inducing notable photodegradation efficiency from 70% to 99% beyond the increases of 4 wt% WO$_3$/3 wt%FeTiO$_3$/TiO$_2$ heterojunctions composites. This shows that the photocatalytic activity of WO$_3$/3 wt% FeTiO$_3$/TiO$_2$ heterojunctions composites increases with the increase in WO$_3$ content up to 4 wt%. Further increases the WO$_3$ content, the photocatalytic efficiency were slightly decreased (90%). As a result, 4 wt% of WO$_3$ is the optimum dosage ratio in the WO$_3$/3 wt%FeTiO$_3$/TiO$_2$ heterojunctions composites.

The photocatalytic degradation kinetics of RB 160 was investigated under the influence of
Figure 6: Photocatalytic degradation of Reactive Blue160 over WO₃/TiO₂ heterojunction photocatalysts.

Figure 7: (a and b) Photocatalytic degradation and kinetic plots of Reactive Blue 160 over various photocatalysts.
WO₃/3 wt%FeTiO₃/TiO₂ heterojunctions composites were shown in Figure 7b. The data obtained from the degradation studies were analyzed with the Langmuir–Hinshelwood kinetic model:

\[r_s = \frac{KC}{1 + KC} \]

where \(r_s \) is the specific degradation reaction rate the dye (mgl⁻¹min⁻¹), \(C \) the concentration of the dye (mgl⁻¹), \(k \) the reaction rate constant (min⁻¹) and \(K \) is the dye adsorption constant. When the concentration \((C) \) is small enough, the above equation can be simplified in an apparent first-order equation:

\[r_s = KappC \left(-\frac{dc}{dt} \right) \]

After integration, we will get

\[-ln \left(\frac{C}{C_0} \right) = k_{app}t \]

where \(C_0 \) is the initial concentration (mg l⁻¹), \(C \) is the concentration of the dye after \((t) \) minutes of illumination. The data obtained from the degradation of RB 160 fits well the apparent first order kinetics (Figure 7b). The electrons in the conduction band can be transferred to surface adsorbed oxygen molecules and form superoxide anions, which can further transform to OH⁻ and initiate the degradation of RB 160.

Photocatalytic mechanism. The work mechanism of this nanocomposite is illustrated in Figure 8. As shown in Figure 8, FeTiO₃ as an electron acceptor can prevent the e⁻ and h⁺ from recombination in the UV-visible photoexcitation of TiO₂. This function of FeTiO₃ can promote the decomposition of organic pollutants by the oxidation of the h⁺. The applications conversing this principle, namely organic compounds as the h⁺ scavenger for the elimination of selenite pollutants, have been extensively studied. Then, FeTiO₃, can deposit onto TiO₂ and shift the

Figure 8: Photocatalytic mechanism of prevention of electron-hole recombination and electron injection process of 2 wt% WO₃/FeTiO₃/TiO₂.

doi:10.11131/2017/101259
absorbency of the system to the visible light region due to FeTiO$_3$ narrow band gap (2.0 eV). In addition, when illuminated, Cd Scan donates the electron and have been used to degrade organic dye.

Furthermore, the combination of WO$_3$, TiO$_2$ and FeTiO$_3$ in which the photocurrent is produced by transferring e$^-$ from TiO$_2$ to FeTiO$_3$ when exposed to visible light. This process can also prevent the e$^-$ and h$^+$ from recombination.

Finally, it is worthy of pointing out that the transformation from FeTiO$_3$ is possible by photo-oxidizing, which make the FeTiO$_3$ in system un-losing. Thus, the 3 wt% FeTiO$_3$/TiO$_2$/WO$_3$ system is a hopeful form of further improving the practicability of WO$_3$ and TiO$_2$.

Reusability of the photocatalyst. Reusability is a very important parameter in assessing the practical application of photocatalysts in wastewater treatment. It can contribute significantly to lowering the operational cost of the process. Hence the reusability of the 2 wt% WO$_3$/FeTiO$_3$/TiO$_2$ ternary composites was studied for the degradation of 100 mg l$^{-1}$ RB 160 solution at pH 3. The photocatalyst was carefully separated from the degraded dye solution by centrifugation and added to the fresh 100 ml dye solution. The results of the analysis were shown in Figure 9. It has been found that 2 wt% WO$_3$/FeTiO$_3$/TiO$_2$ ternary composites completely degraded the RB 160 solution in 120 minutes, even in its third reuse; this shows that the composites have good stability in the acidic conditions. Hence application of 2 wt% WO$_3$/FeTiO$_3$/TiO$_2$ ternary composites for the treatment of textile effluents will be cost effective.

4. Conclusion

Heterojunction composites such as WO$_3$/TiO$_2$, FeTiO$_3$/TiO$_2$ and ternary WO$_3$/FeTiO$_3$/TiO$_2$ was prepared in a simple dispersed method from the metal oxides synthesized by sol-gel method. The synthesized photocatalysts have been evaluated from their activity in the degradation of Reactive Blue 160 in the presence of UV-visible light. From the degradation result, WO$_3$/FeTiO$_3$/TiO$_2$ ternary composites showed higher photocatalytic activity than that of FeTiO$_3$/TiO$_2$ and WO$_3$/TiO$_2$ heterojunctions shows the favourable photocatalytic activity at pH 3. The mineralization of reactive dyes with triazine groups has been reported to be more difficult in most treatment
methods. However, at higher concentrations, the dye solutions, especially chlorotriazine dye solutions transmit only very small portion of photons to reach the photocatalyst surface. Further the WO$_3$/FeTiO$_3$/TiO$_2$ ternary composites were also used for the degradation of four other reactive dyes with different functional groups.

5. References

