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1. Introduction and Definitions

In this paper we use the standard definitions and notations of the value distribution theory [3].
Let 𝑓 and 𝑔 be two nonconstant meromorphic functions defined in the open complex plane ℂ.
For 𝑎 ∈ ℂ ∪ {∞} we say that 𝑓 and 𝑔 share the value 𝑎 CM (counting multiplicities) if the 𝑎-
points of 𝑓 and 𝑔 coincide in locations andmultiplicities. If we do not consider themultiplicities,
we say that 𝑓 and 𝑔 share the value 𝑎 IM(ignoring multiplicities).

We denote by 𝑆(𝑟, 𝑓) any quantity satisfying 𝑆(𝑟, 𝑓) = 𝑜{𝑇(𝑟, 𝑓)} as 𝑟 → ∞ possibly outside
a set of finite linear measure. A meromorphic function 𝑎 = 𝑎(𝑧) is called small function of 𝑓 if
𝑇(𝑟, 𝑎) = 𝑆(𝑟, 𝑓).

Definition 1.1. Let 𝑓 be a nonconstant meromorphic function and 𝑎 ∈ ℂ ∪ {∞}. we denote by
𝑁(𝑟, 𝑎; 𝑓) the counting function of all the 𝑎-points of 𝑓 and by𝑁(𝑟, 𝑎; 𝑓) the corresponding one
for which the multiplicity is not counted.

Definition 1.2. Let 𝑓 be a nonconstant meromorphic function and 𝑎 ∈ ℂ∪ {∞}. For a positive
integer 𝑘we denote by𝑁𝑘(𝑟, 𝑎; 𝑓) the counting function of those 𝑎-points of 𝑓 , where an 𝑎-point
of multiplicity 𝑚 is counted 𝑚 times if and only if 𝑚 ≤ 𝑘 and 𝑘 times if and only if 𝑚 > 𝑘.

In 1996 Fang and Hua [2] proved the following theorem:

Theorem A (see [2]). Let 𝑓 and 𝑔 be two nonconstant entire functions. Also let 𝑛 ≥ 6 be a
positive integer. If 𝑓 𝑛𝑓 ′ and 𝑔𝑛𝑔′ share the value 1 CM, then one of the following holds

(i) 𝑓(𝑧) = 𝑐1𝑒𝑐𝑧, 𝑔(𝑧) = 𝑐2𝑒−𝑐𝑧,where 𝑐1, 𝑐2 and 𝑐 are three constants satisfying (𝑐1𝑐2)𝑛+1𝑐2 = −1.

(ii) 𝑓 = 𝑘𝑔 for a constant 𝑘 such that 𝑘𝑛+1 = 1.

In 2004, Lin and Yi [4] proved the following theorem:

TheoremB (see [4]). Let 𝑓 and 𝑔 be two transcendental meromorphic functions and let 𝑛 ≥ 13
be an integer. If 𝑓 𝑛(𝑓 − 1)2𝑓 ′ and 𝑔𝑛(𝑔 − 1)2𝑔′ share 𝑧 CM, then 𝑓(𝑧) ≡ 𝑔(𝑧).

How to cite this article: Nintu Mandal, “Uniqueness and Differential Polynomials of Meromorphic Functions,” Research in
Applied Mathematics, vol. 1, Article ID 101260, 6 pages, 2017. doi:10.11131/2017/101260 Page 1

Corresponding Author
Nintu Mandal
nintu311209@gmail.com

Editor
Alberto Cabada

Dates
Received 10 November 2016
Accepted 20 June 2017

Copyright © 2017 Nintu
Mandal. This is an open
access article distributed
under the Creative Commons
Attribution License, which
permits unrestricted use,
distribution, and reproduction
in any medium, provided the
original work is properly
cited.

http://www.agialpress.com
mailto:nintu311209@gmail.com


Research in Applied Mathematics

Recently H. P. Waghamore and S. Anand [5] proved the following theorem:

Theorem C (see [5]). Let 𝑓 and 𝑔 be two nonconstant meromorphic functions and 𝑛, 𝑚 be
positive integers such that 𝑛 ≥ 𝑚 + 10. If 𝑓 𝑛(𝑓 − 1)𝑚𝑓 ′ and 𝑔𝑛(𝑔 − 1)𝑚𝑔′ share 𝑧 CM, 𝑓 and 𝑔
share the value∞ IM, then 𝑓(𝑧) ≡ 𝑔(𝑧).

Since

𝑓 𝑛𝑓 ′ = 1
𝑛 + 1(𝑓

𝑛+1)′

and

𝑓 𝑛(𝑓 − 1)𝑚𝑓 ′ = 1
𝑛+1 (𝑓

𝑛+1)′(𝑓 − 1)𝑚

= [𝑓
𝑛+1

(
𝑛𝐶𝑚

𝑛+𝑚+1𝑓
𝑚 −

𝑛𝐶𝑚−1
𝑛+𝑚 𝑓𝑚−1 +⋯+

𝑛𝐶0
𝑛+1 (−1)

𝑚
)]

′
,

therefore it is natural to consider the uniqueness of meromorphic functions concerning more
general kind differential polnomial, such as [𝑓 𝑛𝐿(𝑓)](𝑚), where 𝐿(𝑧) = 𝜆𝑙𝑧𝑙+𝜆𝑙−1𝑧𝑙−1+⋯+𝜆0
and 𝜆𝑙 ≠ 0, 𝜆𝑙−1, 𝜆𝑙−2,… , 𝜆1, 𝜆0 ≠ 0 are complex constants.

In this paper we prove the following result

Theorem 1.1. Let 𝑓 and 𝑔 be two transcendental meromorphic functions such that 𝑓 and
𝑔 shair ∞ IM, let 𝑛, 𝑚, 𝑙 be three positive integers such that 𝑛 > 𝑙 + 3𝑚 + 7. Let 𝐿(𝑧) =
𝜆𝑙𝑧𝑙 + 𝜆𝑙−1𝑧𝑙−1 + ⋯ + 𝜆0, where 𝜆𝑙 ≠ 0, 𝜆𝑙−1, 𝜆𝑙−2,… , 𝜆1, 𝜆0 ≠ 0 are complex constants. If
[𝑓 𝑛𝐿(𝑓)](𝑚) and [𝑔𝑛𝐿(𝑔)](𝑚) share 𝑧 CM then one of the following cases holds:

(i) 𝑓 = 𝑒𝛼1 , and 𝑔 = 𝑒𝛼2 where 𝛼1 and 𝛼2 are nonconstant entire functions.

(ii) 𝑓 = 𝑘𝑔 for a constant 𝑘 such that 𝑘𝑝 = 1, where 𝑝 = 𝑛+𝑙−𝑖, 𝜆𝑙−𝑖 ≠ 0 for some 𝑖 = 0, 1,… , 𝑙.

(iii) 𝑓 and 𝑔 satisfy algebraic euation 𝑄(𝑥1, 𝑥2) = 0, where

𝑄(𝑥1, 𝑥2) = 𝑥𝑛1(𝜆𝑙𝑥𝑙1 + 𝜆𝑙−1𝑥𝑙−11 +⋯+ 𝜆0) − 𝑥𝑛2(𝜆𝑙𝑥𝑙2 + 𝜆𝑙−1𝑥𝑙−12 +⋯+ 𝜆0)

.

2. Lemmas

In this section we present some lemmas which are required in the sequel.

Lemma 2.1 (see [7]). Let 𝑓 be a nonconstant meromorphic function and let 𝜆𝑙 ≠ 0, 𝜆𝑙−1,
𝜆𝑙−2,… , 𝜆1, 𝜆0 be small functions with respect to 𝑓 . Then

𝑇(𝑟, 𝜆𝑙𝑓 𝑙 + 𝜆𝑙−1𝑓 𝑙−1 +⋯+ 𝜆0) = 𝑙𝑇(𝑟, 𝑓) + 𝑆(𝑟, 𝑓)

.

Lemma 2.2. Let f, g be two nonconstant meromorphic functions sharing 1 CM and ∞ IM.
Then one of the following cases holds:

(i) 𝑓 ≡ 𝑔.
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(ii)

𝑇(𝑟, 𝑓) ≤ 𝑁2(𝑟, 0; 𝑓) + 𝑁2(𝑟, 0; 𝑔) + 3𝑁(𝑟,∞; 𝑓) + 𝑆(𝑟, 𝑓) + 𝑆(𝑟, 𝑔)
and

𝑇(𝑟, 𝑔) ≤ 𝑁2(𝑟, 0; 𝑓) + 𝑁2(𝑟, 0; 𝑔) + 3𝑁(𝑟,∞; 𝑔) + 𝑆(𝑟, 𝑓) + 𝑆(𝑟, 𝑔)
.

(iii) 𝑓𝑔 ≡ 1.

Proof. We omit the proof since it can be proved easily using Lemma 2.5 [1]

Lemma2.3 (see [6]). Let 𝑓 be a nonconstant meromorphic function and 𝑘 be a positive integer.
Also let 𝑐 be a nonzero finite complex number. Then

𝑇(𝑟, 𝑓) ≤ 𝑁𝑘+1(𝑟, 0; 𝑓) + 𝑁(𝑟, 0; 𝑓 (𝑘) − 𝑐)

+𝑁(𝑟,∞; 𝑓) − 𝑁0(𝑟, 0; 𝑓 (𝑘+1)) + 𝑆(𝑟, 𝑓),

where 𝑁0(𝑟, 0; 𝑓 (𝑘+1)) denotes the counting function of the zeros of 𝑓 (𝑘+1) which are not zeros
of 𝑓(𝑓 (𝑘) − 𝑐).

Lemma 2.4 (see [4]). Let 𝑓 be a nonconstant meromorphic function and 𝑝, 𝑘 be two positive
integers. Then

𝑁𝑝(𝑟, 0; 𝑓 (𝑘)) ≤ 𝑇(𝑟, 𝑓 (𝑘)) − 𝑇(𝑟, 𝑓) + 𝑁𝑝+𝑘(𝑟, 0; 𝑓) + 𝑆(𝑟, 𝑓),
and

𝑁𝑝(𝑟, 0; 𝑓 (𝑘)) ≤ 𝑁𝑝+𝑘(𝑟, 0; 𝑓) + 𝑘𝑁(𝑟,∞; 𝑓) + 𝑆(𝑟, 𝑓).
Lemma 2.5. Let 𝑓 and 𝑔 be two nonconstant meromorphic functions. Also let 𝐹 = [𝑓 𝑛𝐿(𝑓)](𝑚)
and𝐺 = [𝑔𝑛𝐿(𝑔)](𝑚), where𝐿(𝑧) = 𝜆𝑙𝑧𝑙+𝜆𝑙−1𝑧𝑙−1+⋯+𝜆0 and 𝜆𝑙 ≠ 0, 𝜆𝑙−1, 𝜆𝑙−2,… , 𝜆1, 𝜆0 ≠ 0
are complex constants. If there exists three nonzero constants 𝛼1, 𝛼2, 𝛼3, such that
𝛼1𝐹 + 𝛼2𝐺 = 𝛼3 then 𝑛 ≤ 3𝑚 + 𝑙 + 3.

Proof. By Lemma 2.1, Lemma 2.3 and Lemma 2.4 we have

(𝑛 + 𝑙)𝑇(𝑟, 𝑓) ≤ 𝑁(𝑟,∞; 𝑓) + 𝑁𝑚+1(𝑟, 0; 𝑓 𝑛𝐿(𝑓))

+𝑁(𝑟, 0; 𝐹 − 𝛼3
𝛼1
) + 𝑆(𝑟, 𝑓)

≤ 𝑁(𝑟,∞ ∶ 𝑓) + 𝑁𝑚+1(𝑟, 0; 𝑓 𝑛𝐿(𝑓)) + 𝑁(𝑟, 0; 𝐺) + 𝑆(𝑟, 𝑓)

≤ 𝑁(𝑟,∞ ∶ 𝑓) + 𝑁𝑚+1(𝑟, 0; 𝑓 𝑛𝐿(𝑓)) + 𝑁𝑚+1(𝑟, 0; 𝑔𝑛𝐿(𝑔))

+𝑚𝑁(𝑟,∞; 𝑔𝑛𝐿(𝑔)) + 𝑆(𝑟, 𝑓) + 𝑆(𝑟, 𝑔)

≤ 𝑁(𝑟,∞ ∶ 𝑓) + 𝑁𝑚+1(𝑟, 0; 𝑓 𝑛𝐿(𝑓))

+𝑁𝑚+1(𝑟, 0; 𝑔𝑛𝐿(𝑔)) + 𝑚𝑁(𝑟,∞; 𝑔) + 𝑆(𝑟, 𝑓) + 𝑆(𝑟, 𝑔)

≤ (𝑚 + 𝑙 + 2)𝑇(𝑟, 𝑓) + (2𝑚 + 𝑙 + 1)𝑇(𝑟, 𝑔)

+𝑆(𝑟, 𝑓) + 𝑆(𝑟, 𝑔)

(2.1)

doi:10.11131/2017/101260 Page 3



Research in Applied Mathematics

Similarly we have

(𝑛 + 𝑙)𝑇(𝑟, 𝑔) ≤ (𝑚 + 𝑙 + 2)𝑇(𝑟, 𝑔) + (2𝑚 + 𝑙 + 1)𝑇(𝑟, 𝑓)

+𝑆(𝑟, 𝑓) + 𝑆(𝑟, 𝑔)
(2.2)

From (2.1) and (2.2) we have

(𝑛 − 3𝑚 − 3 − 𝑙){𝑇(𝑟, 𝑓) + 𝑇(𝑟, 𝑔)} ≤ 𝑆(𝑟, 𝑓) + 𝑆(𝑟, 𝑔) (2.3)

From (2.3) we get 𝑛 ≤ 3𝑚 + 𝑙 + 3.

3. Proofs of theMain Results

Proof of Theorem 1.1. Let 𝐹 = 𝑓 𝑛𝐿(𝑓), 𝐺 = 𝑔𝑛𝐿(𝑔), 𝐹1 = [𝑓 𝑛𝐿(𝑓)](𝑚), 𝐺1 = [𝑔𝑛𝐿(𝑔)](𝑚),
𝐹 ∗ = 𝐹

𝑧 and 𝐺∗ = 𝐺
𝑧 . Clearly 𝐹

∗ and 𝐺∗ share 1 CM and ∞ IM. Hence by Lemma 2.2 one of
the following holds:

(i) 𝐹 ∗ ≡ 𝐺∗.
(ii) 𝑇(𝑟, 𝐹 ∗) ≤ 𝑁2(𝑟, 0; 𝐹 ∗) + 𝑁2(𝑟, 0; 𝐺∗) + 3𝑁(𝑟,∞; 𝐹 ∗) + 𝑆(𝑟, 𝐹 ∗) + 𝑆(𝑟, 𝐺∗)
and 𝑇(𝑟, 𝐺∗) ≤ 𝑁2(𝑟, 0; 𝐹 ∗) + 𝑁2(𝑟, 0; 𝐺∗) + 3𝑁(𝑟,∞;𝐺∗) + 𝑆(𝑟, 𝐹 ∗) + 𝑆(𝑟, 𝐺∗).
(iii) 𝐹 ∗𝐺∗ ≡ 1.
So we have to consider the following cases.

Case I: 𝐹 ∗ ≡ 𝐺∗ i.e. 𝐹1 ≡ 𝐺1. Integrating we have

(𝑓 𝑛𝐿(𝑓))(𝑚−1) ≡ (𝑔𝑛𝐿(𝑔))(𝑚−1) + 𝑐𝑚−1,

where 𝑐𝑚−1 is a constant. If 𝑐𝑚−1 ≠ 0 then by Lemma 2.5 we arrive at a contradiction. Hence
𝑐𝑚−1 = 0. Repeating the same process for 𝑚 − 1 times, we get

𝑓 𝑛𝐿(𝑓) ≡ 𝑔𝑛𝐿(𝑔) (3.1)

From (3.1) we have

𝑓 𝑛(𝜆𝑙𝑓 𝑙 + 𝜆𝑙−1𝑓 𝑙−1 +⋯+ 𝜆0) = 𝑔𝑛(𝜆𝑙𝑔𝑙 + 𝜆𝑙−1𝑔𝑙−1 +⋯+ 𝜆0) (3.2)

Let 𝑘 = 𝑓
𝑔 .

If 𝑘 is a constant then substituting 𝑓 = 𝑘𝑔 into (3.2) we get

𝜆𝑙𝑔𝑛+𝑙(𝑘𝑛+𝑙 − 1) + 𝜆𝑙−1𝑔𝑛+𝑙−1(𝑘𝑛+𝑙−1 − 1) +⋯ + 𝜆0𝑔𝑛(𝑘𝑛 − 1) = 0 (3.3)

which implies that 𝑘𝑝 = 1, where 𝑝 = 𝑛+ 𝑙− 𝑖, 𝜆𝑙−𝑖 ≠ 0 for some 𝑖 = 0, 1, 2,… 𝑙. Hence 𝑓 ≡ 𝑘𝑔
for a constant 𝑘, such that 𝑘𝑝 = 1, where 𝑝 = 𝑛 + 𝑙 − 𝑖, 𝜆𝑙−𝑖 ≠ 0 for some 𝑖 = 0, 1, 2,… 𝑙.

If 𝑘 is not a constant, then by (3.3) 𝑓 and 𝑔 satisfy the algebraic equation 𝑄(𝑥1, 𝑥2) = 0,
where

𝑄(𝑥1, 𝑥2) = 𝑥𝑛1(𝜆𝑙𝑥𝑙1 + 𝜆𝑙−1𝑥𝑙−11 +⋯+ 𝜆0) − 𝑥𝑛2(𝜆𝑙𝑥𝑙2 + 𝜆𝑙−1𝑥𝑙−12 +⋯+ 𝜆0)

.

Case II: Since 𝐹 ∗ and 𝐺∗ share 1 CM and∞ IM therefore by Lemma 2.2 we have

𝑇(𝑟, 𝐹 ∗) ≤ 𝑁2(𝑟, 0; 𝐹 ∗) + 𝑁2(𝑟, 0; 𝐺∗) + 3𝑁(𝑟,∞; 𝐹 ∗)

+𝑆(𝑟, 𝐹 ∗) + 𝑆(𝑟, 𝐺∗)
(3.4)
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and

𝑇(𝑟, 𝐺∗) ≤ 𝑁2(𝑟, 0; 𝐹 ∗) + 𝑁2(𝑟, 0; 𝐺∗) + 3𝑁(𝑟,∞;𝐺∗)

+𝑆(𝑟, 𝐹 ∗) + 𝑆(𝑟, 𝐺∗)
(3.5)

Without loss of generality, we suppose that 𝑇(𝑟, 𝑓) ≤ 𝑇(𝑟, 𝑔), 𝑟 ∈ 𝐼 , where 𝐼 is a set of finite
measure. By Lemma 2.1 and Lemma 2.4 we get

𝑁2(𝑟, 0; 𝐹1) ≤ 𝑇(𝑟, 𝐹1) − (𝑛 + 𝑙)𝑇(𝑟, 𝑓) + 𝑁2+𝑚(𝑟, 0; 𝐹) + 𝑆(𝑟, 𝐹)

That is

𝑁2(𝑟, 0; 𝐹1) ≤ 𝑇(𝑟, 𝐹1) − 𝑇(𝑟, 𝐹) + 𝑁2+𝑚(𝑟, 0; 𝑓 𝑛𝐿(𝑓)) + 𝑆(𝑟, 𝑓) (3.6)

Since 𝑓 and 𝑔 are transcendental using Lemma 2.1 we have from (3.4)

𝑇(𝑟, 𝐹1) ≤ 𝑁2(𝑟, 0; 𝐹1) + 𝑁2(𝑟, 0; 𝐺1) + 3𝑁(𝑟,∞; 𝐹1)

+𝑆(𝑟, 𝐹1) + 𝑆(𝑟, 𝐺1)
(3.7)

Using Lemma 2.4 from (3.6) and (3.7) we have

(𝑛 + 𝑙)𝑇(𝑟, 𝑓) ≤ 𝑁2(𝑟, 0; 𝐺1) + 𝑁2+𝑚(𝑟, 0; 𝑓 𝑛𝐿(𝑓)) + 3𝑁(𝑟,∞; 𝑓) + 𝑆(𝑟, 𝑓)

≤ 𝑁2+𝑚(𝑟, 0; 𝑔𝑛𝐿(𝑔)) + 𝑁2+𝑚(𝑟, 0; 𝑓 𝑛𝐿(𝑓))

+(𝑚 + 3)𝑁(𝑟,∞; 𝑓) + 𝑆(𝑟, 𝑓)

≤ (3𝑚 + 2𝑙 + 7)𝑇(𝑟, 𝑓) + 𝑆(𝑟, 𝑓),
which contradicts with 𝑛 > 3𝑚 + 𝑙 + 7.

Case III: 𝐹 ∗𝐺∗ ≡ 1. That is

[𝑓 𝑛𝐿(𝑓)](𝑚)[𝑔𝑛𝐿(𝑔)](𝑚) ≡ 𝑧2 (3.8)

Since 𝑓 and 𝑔 share∞ IM therefore from (3.8) it follows that 𝑓 and 𝑔 have no pole. Suppose,if
possible, that 𝑧0 is a zero of 𝑓 of order 𝑝, then 𝑧0 must be a zero of [𝑓 𝑛𝐿(𝑓)]𝑚 of order 𝑛𝑝 − 𝑚.
Since 𝑛 > 𝑚 + 2 therefore 𝑧0 must be a zero of 𝑧2 with the order at least 3. This is impossible.
Therefore 𝑓 has no zero. Hence 𝑓 = 𝑒𝛼1 , where 𝛼1 is a nonconstant entire function. Similarly
we can prove that 𝑔 = 𝑒𝛼2 , where 𝛼2 is a nonconstant entire function.

This proves the theorem.
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