GET THE APP

Development of Porous-Organic-Polymer Driven Cobalt Phosphide Hybrid Nanosheet: A Smart and Durable Material for Bio-fuel Upgradation via Hydrodeoxygenation Pathway | Abstract

The Open Access Journal of Science and Technology

Abstract

+44 193 554 8010
Google Scholar citation report
Citations : 310

The Open Access Journal of Science and Technology received 310 citations as per Google Scholar report

Development of Porous-Organic-Polymer Driven Cobalt Phosphide Hybrid Nanosheet: A Smart and Durable Material for Bio-fuel Upgradation via Hydrodeoxygenation Pathway

Author(s): Subhash Chandra Shit

Hydrodeoxygenation (HDO) is a promising route for the upgrading of bio-oils to eco-friendly biofuel produced from lignocellulose.1 Herein, we report the sequential synthesis of a hybrid nanocatalyst Cox[email protected], where substoichiometric CoxP nanoparticles are distributed in a porous organic polymer (POP) via solid-state phosphidation of the Co3O4@POP nanohybrid system. We also explored the catalytic activity of the above two nanohybrids toward the HDO of vanillin, a typical compound of lignin-derived bio-oil to 2-methoxy-4-methylphenol, which is a promising future biofuel. The Cox[email protected] exhibited superior catalytic activity and selectivity toward desired product with improved stability compared to the Co3O4@POP. Based on advanced sample characterization results, the extraordinary selectivity of Cox[email protected] is attributed to the strong interaction of the cation of the CoxP nanoparticle with the POP matrix and the consequent modifications of the electronic states. Through attenuated total reflectance-infrared spectroscopy, we have also observed different interaction strengths between vanillin and the two catalysts. The decreased catalytic activity of Co3O4@POP compared to Cox[email protected] catalyst could be attributed to the stronger adsorption of vanillin over the Co3O4@POP catalyst. Also from kinetic investigation, it is clearly demonstrated that the Co3O4@POP has higher activation energy barrier than the Cox[email protected], which also reflects to the reduction of the overall efficiency of the Co3O4@POP catalyst. To the best of our knowledge, this is the first approach in POP-encapsulated cobalt phosphide catalyst synthesis and comprehensive study in establishing the structure-activity relationship in significant step-forwarding in promoting biomass refining.

 

Share this article

paper.io

agar io

wowcappadocia.com
cappadocia-hotels.com
caruscappadocia.com
brothersballoon.com
balloon-rides.net

wormax io

replica watches